Keywords: asymptotics of functionals; innovation; stationary Gibbs particle process; Wasserstein distance
@article{10_14736_kyb_2018_4_0765,
author = {Flimmel, Daniela and Bene\v{s}, Viktor},
title = {Gaussian approximation for functionals of {Gibbs} particle processes},
journal = {Kybernetika},
pages = {765--777},
year = {2018},
volume = {54},
number = {4},
doi = {10.14736/kyb-2018-4-0765},
mrnumber = {3863255},
zbl = {06987033},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0765/}
}
TY - JOUR AU - Flimmel, Daniela AU - Beneš, Viktor TI - Gaussian approximation for functionals of Gibbs particle processes JO - Kybernetika PY - 2018 SP - 765 EP - 777 VL - 54 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0765/ DO - 10.14736/kyb-2018-4-0765 LA - en ID - 10_14736_kyb_2018_4_0765 ER -
Flimmel, Daniela; Beneš, Viktor. Gaussian approximation for functionals of Gibbs particle processes. Kybernetika, Tome 54 (2018) no. 4, pp. 765-777. doi: 10.14736/kyb-2018-4-0765
[1] Beneš, V., Večeřa, J., Pultar, M.: Planar segment processes with reference mark distributions, modeling and simulation. Methodol. Comput. Appl. Probab. (2018), accepted. | DOI
[2] Blaszczyszyn, B., Yogeshwaran, D., Yukich, J. E.: Limit theory for geometric statistics of point processes having fast decay of correlations. Preprint (2018), submitted to the Annals of Probab. | arXiv
[3] Daley, D. J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Volume I: Elementary Theory and Methods. | MR
[4] Dereudre, D.: Introduction to the theory of Gibbs point processes. Preprint (2017), submitted. | arXiv
[5] Georgii, H.-O.: Gibbs Measures and Phase Transitions. Second edition. W. de Gruyter and Co., Berlin 2011. | DOI | MR
[6] Last, G., Penrose, M.: Lectures on the Poisson Process. Cambridge University Press, Cambridge 2017. | DOI | MR
[7] Mase, S.: Marked Gibbs processes and asymptotic normality of maximum pseudo-likelihood estimators. Math. Nachr. 209 (2000), 151-169. | DOI | MR
[8] Ruelle, D.: Superstable interactions in classical statistical mechanics. Commun. Math. Phys. 18 (1970), 127-159. | DOI | MR
[9] Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Berlin 2008. | DOI | MR | Zbl
[10] Schreiber, T., Yukich, J. E.: Limit theorems for geometric functionals of Gibbs point processes. Ann. Inst. Henri Poincaré - Probab. et Statist. 49 (2013), 1158-1182. | DOI | MR
[11] Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London 1982. | DOI | MR
[12] Stucki, K., Schuhmacher, D.: Bounds for the probability generating functional of a Gibbs point process. Adv. Appl. Probab. 46 (2014), 21-34. | DOI | MR
[13] Torrisi, G. L.: Probability approximation of point processes with Papangelou conditional intensity. Bernoulli 23 (2017), 2210-2256. | DOI | MR
[14] Večeřa, J., Beneš, V.: Approaches to asymptotics for U-statistics of Gibbs facet processes. Statist. Probab. Let. 122 (2017), 51-57. | DOI | MR
[15] Xia, A., Yukich, J. E.: Normal approximation for statistics of Gibbsian input in geometric probability. Adv. Appl. Probab. 25 (2015), 934-972. | DOI | MR
Cité par Sources :