Gaussian approximation for functionals of Gibbs particle processes
Kybernetika, Tome 54 (2018) no. 4, pp. 765-777.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the paper asymptotic properties of functionals of stationary Gibbs particle processes are derived. Two known techniques from the point process theory in the Euclidean space $\mathbb{R}^d$ are extended to the space of compact sets on $\mathbb{R}^d$ equipped with the Hausdorff metric. First, conditions for the existence of the stationary Gibbs point process with given conditional intensity have been simplified recently. Secondly, the Malliavin-Stein method was applied to the estimation of Wasserstein distance between the Gibbs input and standard Gaussian distribution. We transform these theories to the space of compact sets and use them to derive a Gaussian approximation for functionals of a planar Gibbs segment process.
DOI : 10.14736/kyb-2018-4-0765
Classification : 60D05, 60G55
Keywords: asymptotics of functionals; innovation; stationary Gibbs particle process; Wasserstein distance
@article{10_14736_kyb_2018_4_0765,
     author = {Flimmel, Daniela and Bene\v{s}, Viktor},
     title = {Gaussian approximation for functionals of {Gibbs} particle processes},
     journal = {Kybernetika},
     pages = {765--777},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {2018},
     doi = {10.14736/kyb-2018-4-0765},
     mrnumber = {3863255},
     zbl = {06987033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0765/}
}
TY  - JOUR
AU  - Flimmel, Daniela
AU  - Beneš, Viktor
TI  - Gaussian approximation for functionals of Gibbs particle processes
JO  - Kybernetika
PY  - 2018
SP  - 765
EP  - 777
VL  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0765/
DO  - 10.14736/kyb-2018-4-0765
LA  - en
ID  - 10_14736_kyb_2018_4_0765
ER  - 
%0 Journal Article
%A Flimmel, Daniela
%A Beneš, Viktor
%T Gaussian approximation for functionals of Gibbs particle processes
%J Kybernetika
%D 2018
%P 765-777
%V 54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0765/
%R 10.14736/kyb-2018-4-0765
%G en
%F 10_14736_kyb_2018_4_0765
Flimmel, Daniela; Beneš, Viktor. Gaussian approximation for functionals of Gibbs particle processes. Kybernetika, Tome 54 (2018) no. 4, pp. 765-777. doi : 10.14736/kyb-2018-4-0765. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0765/

Cité par Sources :