Keywords: realization; nonlinear systems; algebraic methods
@article{10_14736_kyb_2018_4_0736,
author = {Kaldm\"ae, Arvo and Kotta, \"Ulle},
title = {Realization of nonlinear input-output equations in controller canonical form},
journal = {Kybernetika},
pages = {736--747},
year = {2018},
volume = {54},
number = {4},
doi = {10.14736/kyb-2018-4-0736},
mrnumber = {3863253},
zbl = {06987031},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0736/}
}
TY - JOUR AU - Kaldmäe, Arvo AU - Kotta, Ülle TI - Realization of nonlinear input-output equations in controller canonical form JO - Kybernetika PY - 2018 SP - 736 EP - 747 VL - 54 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0736/ DO - 10.14736/kyb-2018-4-0736 LA - en ID - 10_14736_kyb_2018_4_0736 ER -
%0 Journal Article %A Kaldmäe, Arvo %A Kotta, Ülle %T Realization of nonlinear input-output equations in controller canonical form %J Kybernetika %D 2018 %P 736-747 %V 54 %N 4 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0736/ %R 10.14736/kyb-2018-4-0736 %G en %F 10_14736_kyb_2018_4_0736
Kaldmäe, Arvo; Kotta, Ülle. Realization of nonlinear input-output equations in controller canonical form. Kybernetika, Tome 54 (2018) no. 4, pp. 736-747. doi: 10.14736/kyb-2018-4-0736
[1] Aström, K. J., Murray, R. M.: Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2008. | DOI | MR
[2] Bartosiewicz, Z., Kotta, Ü., Tõnso, M., Wyrwas, M.: Accessibility conditions of MIMO nonlinear control systems on homogeneous time scales. Math. Control Relat. Fields 6 (2016), 217-250. | DOI | MR
[3] Belikov, J., Kotta, P., Kotta, Ü., Tõnso, M.: Practical polynomial formulas in MIMO nonlinear realization problem. In: 51st IEEE Conference on Decision and Control, Hawaii 2012, pp. 1253-1258. | DOI
[4] Belikov, J., Kotta, Ü., Tõnso, M.: Adjoint polynomial formulas for nonlinear state-space realization. IEEE Trans. Automat. Control 59 (2014), 256-261. | DOI | MR
[5] Belikov, J., Kotta, Ü., Tõnso, M.: Realization of nonlinear MIMO system on homogeneous time scales. Eur. J. Control 23 (2015), 48-54. | DOI | MR
[6] Bronstein, M., Petkovsek, M.: An introduction to pseudo-linear algebra. Theoret. Comput. Sci. 157 (1996), 3-33. | DOI | MR
[7] Conte, G., Moog, C. H., Perdon, A. M.: Algebraic Methods for Nonlinear Control Systems. Theory and Applications. Springer, London 2007. | DOI | MR
[8] Crouch, P. E., Lamnabhi-Lagarrigue, F.: State space realizations of nonlinear systems defined by input-output differential equations. In: Analysis and Optimization of Systems, Springer, Berlin, Heidelberg 1988, pp 138-149. | DOI | MR
[9] Delaleau, E., Respondek, W.: Lowering the orders of derivatives of controls in generalized state space systems. J. Math. Systems, Estimation, Control 5 (1995), 1-27. | MR | Zbl
[10] Halas, M., Kawano, Y., Moog, C. H., Ohtsuka, T.: Realization of a nonlinear system in the feedforward form: a polynomial approach. In: 19th IFAC World Congress, Cape Town 2014, pp. 9480-9485. | DOI
[11] Halas, M., Kotta, Ü.: A transfer function approach to the realisation problem of nonlinear systems. Int. J. Control 85 (2012), 320-331. | DOI | MR
[12] Kolchin, E. R.: Differential Algebra and Algebraic Groups. Academic Press, New York 1973. | MR
[13] Kotta, Ü., Mullari, T.: Equivalence of realizability conditions for nonlinear control systems. Proc. Est. Acad. Sci. Physics. Math. 55 (2006), 24-42. | MR
[14] Kotta, Ü., Sadegh, N.: Two approaches for state space realization of NARMA models: bridging the gap. Math. Comput. Model. Dyn. Syst. 8 (2002), 21-32. | DOI
[15] Morales, V. L., Plestan, F., Glumineau, A.: Linearization by completely generalized input-output injection. Kybernetika 35 (1999), 793-802. | MR
[16] Plestan, F., Glumineau, A.: Linearization by generalized input-output injection. Systems Control Lett. 31 (1997), 115-128. | DOI | MR
[17] Sontag, E. D.: Mathematical Control Theory. Springer-Verlag, New York 1998. | DOI | MR | Zbl
[18] Tõnso, M., Kotta, Ü.: Realization of continuous-time nonlinear input-output equations: polynomial approach. In: 12th International Conference on Computer Aided Systems Theory, Gran Canaria 2009, pp. 633-640. | DOI
[19] Schaft, A. J. van der: On realization of nonlinear systems described by higher-order differential equations. Math. Systems Theory 19 (1987), 239-275. | DOI | MR
[20] Zhang, J., Moog, C. H., Xia, X.: Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra. Kybernetika 46 (2010), 799-830. | MR | Zbl
Cité par Sources :