Keywords: neutral differential systems with multiple delays; delay-dependent stability; Runge–Kutta method; Lagrange interpolation; argument principle
@article{10_14736_kyb_2018_4_0718,
author = {Hu, Guang-Da},
title = {Delay-dependent stability of {Runge-Kutta} methods for linear neutral systems with multiple delays},
journal = {Kybernetika},
pages = {718--735},
year = {2018},
volume = {54},
number = {4},
doi = {10.14736/kyb-2018-4-0718},
mrnumber = {3863252},
zbl = {06987030},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0718/}
}
TY - JOUR AU - Hu, Guang-Da TI - Delay-dependent stability of Runge-Kutta methods for linear neutral systems with multiple delays JO - Kybernetika PY - 2018 SP - 718 EP - 735 VL - 54 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0718/ DO - 10.14736/kyb-2018-4-0718 LA - en ID - 10_14736_kyb_2018_4_0718 ER -
%0 Journal Article %A Hu, Guang-Da %T Delay-dependent stability of Runge-Kutta methods for linear neutral systems with multiple delays %J Kybernetika %D 2018 %P 718-735 %V 54 %N 4 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0718/ %R 10.14736/kyb-2018-4-0718 %G en %F 10_14736_kyb_2018_4_0718
Hu, Guang-Da. Delay-dependent stability of Runge-Kutta methods for linear neutral systems with multiple delays. Kybernetika, Tome 54 (2018) no. 4, pp. 718-735. doi: 10.14736/kyb-2018-4-0718
[1] Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford 2003. | DOI | MR
[2] Brown, J. W., Churchill, R. V.: Complex Variables and Applications. McGraw-Hill Companies, Inc. and China Machine Press, Beijing 2004. | MR
[3] Hale, J. K., Lunel, S. M. Verduyn: Strong stabilization of neutral functional differential equations. IMA J. Math. Control Info. 19 (2002), 5-23. | DOI | MR
[4] Hu, G. D.: Stability criteria of linear neutral systems with distributed delays. Kybernetika 47 (2011), 273-284. | MR
[5] Hu, G. D., Cahlon, B.: Estimations on numerically stable step-size for neutral delay differential systems with multiple delays. J. Comput. Appl. Math. 102 (1999), 221-234. | DOI | MR
[6] Hu, G. D., Hu, G. D., Zou, X.: Stability of linear neutral systems with multiple delays: boundary criteria. Appl. Math. Comput. 148 (2004), 707-715. | DOI | MR
[7] Huang, C., Vandewalle, S.: An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays. SIAM J. Scientific Computing 25 (2004), 1608-1632. | DOI | MR
[8] Johnson, L. W., Riess, R. Dean, Arnold, J. T.: Introduction to Linear Algebra. Prentice-Hall, Englewood Cliffs 2000.
[9] Jury, E. I.: Theory and Application of $z$-Transform Method. John Wiley and Sons, New York 1964.
[10] Kim, A. V., Ivanov, A. V.: Systems with Delays. Scrivener Publishing LLC, Salem, Massachusetts 2015. | DOI | MR
[11] Kolmanovskii, V. B., Myshkis, A.: Introduction to Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht 1999. | DOI | MR
[12] Lambert, J. D.: Numerical Methods for Ordinary Differential Systems. John Wiley and Sons, New York 1999. | MR
[13] Lancaster, P., Tismenetsky, M.: The Theory of Matrices with Applications. Academic Press, Orlando 1985. | MR
[14] Michiels, W., Niculescu, S.: Stability, Control and Computation for Time Delay Systems: An Eigenvalue Based Approach. SIAM, Philadelphia 2014. | DOI | MR
[15] Tian, H., Kuang, J.: The stability of the $\theta$-methods in numerical solution of delay differential equations with several delay terms. J. Comput. Appl. Math. 58 (1995), 171-181. | DOI | MR
[16] Vyhlidal, T., Zitek, P.: Modification of Mikhaylov criterion for neutral time-delay systems. IEEE Trans. Automat. Control 54 (2009), 2430-2435. | DOI | MR
[17] Wang, W.: Nonlinear stability of one-leg methods for neutral Volterra delay-integro-differential equations. Math. Comput. Simul. 97 (2014), 147-161. | DOI | MR
Cité par Sources :