Keywords: Helmholtz theorem; chaos; hidden attractor; bifurcation; Hamilton energy
@article{10_14736_kyb_2018_4_0648,
author = {Zhang, Ge and Wang, Chunni and Alsaedi, Ahmed and Ma, Jun and Ren, Guodong},
title = {Dependence of hidden attractors on non-linearity and {Hamilton} energy in a class of chaotic system},
journal = {Kybernetika},
pages = {648--663},
year = {2018},
volume = {54},
number = {4},
doi = {10.14736/kyb-2018-4-0648},
mrnumber = {3863249},
zbl = {06987027},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0648/}
}
TY - JOUR AU - Zhang, Ge AU - Wang, Chunni AU - Alsaedi, Ahmed AU - Ma, Jun AU - Ren, Guodong TI - Dependence of hidden attractors on non-linearity and Hamilton energy in a class of chaotic system JO - Kybernetika PY - 2018 SP - 648 EP - 663 VL - 54 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0648/ DO - 10.14736/kyb-2018-4-0648 LA - en ID - 10_14736_kyb_2018_4_0648 ER -
%0 Journal Article %A Zhang, Ge %A Wang, Chunni %A Alsaedi, Ahmed %A Ma, Jun %A Ren, Guodong %T Dependence of hidden attractors on non-linearity and Hamilton energy in a class of chaotic system %J Kybernetika %D 2018 %P 648-663 %V 54 %N 4 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0648/ %R 10.14736/kyb-2018-4-0648 %G en %F 10_14736_kyb_2018_4_0648
Zhang, Ge; Wang, Chunni; Alsaedi, Ahmed; Ma, Jun; Ren, Guodong. Dependence of hidden attractors on non-linearity and Hamilton energy in a class of chaotic system. Kybernetika, Tome 54 (2018) no. 4, pp. 648-663. doi: 10.14736/kyb-2018-4-0648
[1] Ahmad, W. M., Sprott, J. C.: Chaos in fractional-order autonomous nonlinear systems. Chaos 6 (2003), 339-351. | DOI
[2] Aihara, K., Takabe, T., Toyoda, M.: Chaotic neural networks. Phys. Lett. A 144 (2001), 333-340. | DOI | MR
[3] Aram, Z., Jafari, S., al., J. Ma et: Using chaotic artificial neural networks to model memory in the brain. Commun. Nonlinear Sci. Numer. Simulat. 44 (2017), 449-459. | DOI | MR
[4] Bao, B. C., Xu, J. P., Liu, Z.: Initial state dependent dynamical behaviors in a Memristor based chaotic circuit. Chinese Phys. Lett. 27 (2010), 070504. | DOI
[5] Barati, K., Jafari, S., al., J. C. Sprott et: Simple chaotic flows with a curve of equilibria. Int. J. Bifurcat. Chaos 26 (2016), 1630034. | DOI | MR
[6] Barrow-Green, J.: Poincaré and the three body problem. Amer. Math. Soc. 2 (1997). | MR
[7] Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circ. Theory 18 (1971), 507-519. | DOI
[8] Dantsev, D.: A Novel type of chaotic attractor for quadratic systems without equilibriums. Int. J. Bifurcat. Chaos 12 (2002), 659-661. | DOI
[9] Ditto, W. L., Rauseo, S. N., Spano, M. L.: Experimental control of chaos. Phys. Rev. Lett. 65 (1991), 3211-3214. | DOI
[10] Dudkowski, D., Jafari, S., al., T. Kapitaniak et: Hidden attractors in dynamical systems. Phys. Rep. 637 (2016), 1-50. | DOI | MR
[11] Ermakov, I. V., Kingni, S. T., al., V. Z. Tronciu et: Chaotic semiconductor ring lasers subject to optical feedback: Applications to chaos-based communications. Optics Commun. 286 (2013), 265-272. | DOI
[12] Feigenbaum, M. J.: The onset spectrum of turbulence. Phys. Lett. A 74 (1979), 375-378. | DOI | MR
[13] Garfinkel, A., Spano, M. L., al., W. L. Ditto et: Controlling cardiac chaos. Science 257 (1992), 1230-1235. | DOI
[14] Gotthans, T., Petržela, J.: New class of chaotic systems with circular equilibrium. Nonlinear Dyn. 81 (2015), 1141-1149. | DOI | MR
[15] Gotthans, T., Sprott, J. C., Petržela, J.: Simple Chaotic Flow with Circle and Square Equilibrium. Int. J. Bifurcat. Chaos 26 (2016), 1650137. | DOI | MR
[16] Guo, Y. L., Qi, G. Y., Hamam, Y.: A multi-wing spherical chaotic system using fractal process. Nonlinear Dyn. 85 (2016), 2765-2775. | DOI | MR
[17] Hu, X., Liu, C., al., L. Liu et: Multi-scroll hidden attractors in improved Sprott A system. Nonlinear Dyn. 86 (2016), 1725-1734. | DOI
[18] Itoh, M., Chua, L. O.: Memristor oscillators. Int. J. Bifurcat. Chaos 8 (2008), 3183-3206. | DOI | MR
[19] Jafari, M. A., Mliki, E., al., A. Akgul et: Chameleon: the most hidden chaotic flow. Nonlinear Dyn. 88 (2017), 2303-2317. | DOI | MR
[20] Jafari, S., Sprott, J. C.: Simple chaotic flows with a line equilibrium. Chaos Solutons Fractals 57 (2013), 79-84. | DOI | MR | Zbl
[21] Jafari, S., Sprott, J. C., al., V. T. Pham et: Simple chaotic 3D flows with surfaces of equilibria. Nonlinear Dyn. 86 (2016), 1349-1358. | DOI
[22] Jia, B., Gu, H. G., al., L. Li et: Dynamics of period-doubling bifurcation to chaos in the spontaneous neural firing patterns. Cogn. Neurodyn. 6 (2012), 89-106. | DOI
[23] Kennedy, M. P.: Chaos in the Colpitts oscillator. IEEE Trans. Circ. Syst. I 41 (1994), 711-774. | DOI
[24] Kobe, D. H.: Helmholtz's theorem revisited. Amer. J. Physics 54 (1986), 552-554. | DOI
[25] Kwok, H. S., Tang, W. K. S.: A fast image encryption system based on chaotic maps with finite precision representation. Chaos Solitons Fractals 32 (2007), 1518-1529. | DOI | MR
[26] Leonov, G. A., Kuznetsov, N. V., Vagaitsev, V. I.: Hidden attractor in smooth Chua systems. Physica D 241 (2012), 1482-1486. | DOI | MR
[27] Leonov, G. A., Kuznetsov, N. V., Vagaitsev, V. I.: Localization of hidden Chua's attractors. Phys. Lett. A 375 (2011), 2230-2233. | DOI | MR | Zbl
[28] Leonov, G. A., Kuznetsov, N. V., Vagaitsev, V. I.: Hidden attractor in smooth Chua systems. Physica D 241 (2012), 1482-1486. | DOI | MR
[29] Leonov, G. A., Kuznetsov, N. V., Mokaev, T. N.: Homoclinic orbit and hidden attractor in the Lorenz-like system describing the fluid convection motion in the rotating cavity. Commun. Nonlinear Sci. Numer. Simulat. 28 (2015), 166-176. | DOI | MR
[30] Li, C., Li, S., al., M. Asim et: On the security defects of an image encryption scheme. Image Vision Computing 27 (2009), 1371-1381. | DOI
[31] Li, Y. Y., G., H., Gu: The distinct stochastic and deterministic dynamics between period-adding and period-doubling bifurcations of neural bursting patterns. Nonlinear Dyn. 87 (2017), 2541-2562. | DOI
[32] Li, X., Li, C., Lee, I. K.: Chaotic image. 125 (2016), 48-63. | DOI
[33] Li, F., Yao, C. G.: The infinite-scroll attractor and energy transition in chaotic circuit. Nonlinear Dyn. 84 (2016), 2305-2315. | DOI | MR
[34] Li, T. Y., Yorke, J. Y.: Period three implies Chaos. Amer. Math. Monthly 82 (1975), 985-992. | DOI | MR
[35] Lorenz, E. N.: Deterministic nonperiodic flow. J. Atmospher. Sci. 20 (1963), 130-141. | DOI
[36] Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205 (2016), 375-381. | DOI
[37] Lv, M., Wang, C., al., G. Ren et: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85 (2016), 1479-1490. | DOI
[38] Ma, J., Wu, X. Y., al., R. T. Chu et: Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn. 76 (2014), 1951-1962. | DOI
[39] Ma, J., Li, A. B., al., Z. S. Pu et: A time-varying hyperchaotic system and its realization in circuit. Nonlinear Dyn. 62 (2010), 535-541. | DOI
[40] Ma, J., Mi, L., al., P. Zhou et: Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307 (2017), 321-328. | DOI | MR
[41] Ma, J., Song, X. L., al., J. Tang et: Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing 167 (2015), 378-389. | DOI
[42] Ma, J., Wu, F., al., W. Jin et: Calculation of Hamilton energy and control of dynamical systems with different types of attractors. Chaos 27 (2017), 481-495. | DOI | MR
[43] Ma, J., Wu, F. Q., al., G. D. Ren et: A class of initials-dependent dynamical systems. Appl. Math. Comput. 298 (2017), 65-76. | DOI | MR
[44] Ma, J., Wu, F., Wang, C.: Synchronization behaviors of coupled neurons under electromagnetic radiation. Int. J. Mod Phys. B 31 (2017), 1650251. | DOI | MR
[45] Ma, J., Zhang, A. H., al., Y. F. Xia et: Optimize design of adaptive synchronization controllers and parameter observers in different hyperchaotic systems. Appl. Math. Comput. 215 (2010), 3318-3326. | DOI | MR
[46] May, R. M.: Simple mathematical models with very complicated dynamics. Nature 261 (1976), 459-467. | DOI | Zbl
[47] Molaie, M., Jafari, S., al., J. C. Sprott et: Simple chaotic flows with one stable equilibrium. Int. J. Bifurcat. Chaos (2013), 1350188. | DOI | MR
[48] Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurcat. Chaos 20 (2010), 1335-1350. | DOI
[49] Pham, V- T., Jafari, S., al., X. Wang X et: A chaotic system with different shapes of equilibria. Int. J. Bifurcat. Chaos 26 (2016), 1650069. | DOI | MR
[50] Pham, V. T., Volos, C., Jafari, S.: A Chaotic system with different families of hidden attractors. Int. J. Bifurcat. Chaos 26 (2016), 1650139. | DOI | MR
[51] Piper, J. R., Sprott, J. C.: Simple autonomous chaotic circuit. IEEE Trans. Circ. Syst. II 57 (2010), 730-734. | DOI
[52] Qi, G. Y., Chen, G. R.: A spherical chaotic system. Nonlinear Dyn. 81 (2015), 1381-1392. | DOI | MR
[53] Ren, G. D., Xu, Y., Wang, C. N.: Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dyn. 88 (2017), 893-901. | DOI
[54] Ryeu, J. K., Aihara, K., Tsuda, I.: Fractal encoding in a chaotic neural network. Phys. Rev. E 64 (2001), 046202. | DOI
[55] Shaw, R.: The dripping faucet as a model chaotic system. Aerial Press, Santa Cruz 1984. | MR
[56] Song, X. L., Jin, W. Y., Ma, J.: Energy dependence on the electric activities of a neuron. Chinese Phys. B 24 (2015), 604-609. | DOI
[57] Strukov, D. B., Snider, G. S., al., D. R. Stewart et: The missing memristor found. Nature 453( 2008), 80-83. | DOI
[58] Wang, Z. H., Cang, S. J., al., E. O. Ochola et: A hyperchaotic system without equilibrium. Nonlinear Dyn. 69 (2012), 531-537. | DOI | MR
[59] Wang, X., Chen, G. R.: Constructing a chaotic system with any number of equilibria. Nonlinear Dyn. 71 (2013), 429-436. | DOI | MR
[60] Wang, C., Chu, R., Ma, J.: Controlling a chaotic resonator by means of dynamic track control. Complexity 21 (2015), 370-378. | DOI | MR
[61] Wang, S., Kuang, J., al., J. Li et: Chaos-based secure communications in a large community. Phys. Rev. E 66 (2002), 065202. | DOI
[62] Wang, C. N., Ma, J., al., Y. Liu et: Chaos control, spiral wave formation, and the emergence of spatiotemporal chaos in networked Chua circuits. Nonlinear Dyn. 67 (2012), 139-146. | DOI
[63] Wang, C. N., Wang, Y., Ma, J.: Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem. Acta Physica Sinica 65 (2016), 240501.
[64] Wolf, A., Swift, J. B., al., H. L. Swinney et: Determining Lyapunov exponents from a time series. Physica D 16 (1985), 285-317. | DOI | MR
[65] Wu, C. W., Chua, L. O.: A simple way to synchronize chaotic systems with applications to secure communication systems. Int. J. Bifurcat. Chaos 3 (1993), 1619-1627. | DOI
[66] Wu, X. Y., Ma, J., al., L. H. Yuan et: Simulating electric activities of neurons by using PSPICE. Nonlinear Dyn. 75 (2014), 113-126. | DOI | MR
[67] Yalcin, M. E: Multi-scroll and hypercube attractors from a general jerk circuit using Josephson junctions. Chaos Solutons Fractals 34 (2007), 1659-1666. | DOI
[68] Yang, T.: A survey of chaotic secure communication systems. Int. J. Comput. Cogn. 2 (2004), 81-130.
[69] Zarei, A.: Complex dynamics in a 5-D hyper-chaotic attractor with four-wing, one equilibrium and multiple chaotic attractors. Nonlinear Dyn. 81 (2015), 585-605. | DOI | MR
[70] Zarei, A., Tavakoli, S.: Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic autonomous hyper-chaotic system. Appl. Math. Comput. 291 (2016), 323-339. | DOI | MR
Cité par Sources :