Keywords: nonlinear optimal control; pseudospectral method; Hamilton–Jacobi–Bellman equation
@article{10_14736_kyb_2018_4_0629,
author = {Mehrali-Varjani, Mohsen and Shamsi, Mostafa and Malek, Alaeddin},
title = {Solving a class of {Hamilton-Jacobi-Bellman} equations using pseudospectral methods},
journal = {Kybernetika},
pages = {629--647},
year = {2018},
volume = {54},
number = {4},
doi = {10.14736/kyb-2018-4-0629},
mrnumber = {3863248},
zbl = {06987026},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0629/}
}
TY - JOUR AU - Mehrali-Varjani, Mohsen AU - Shamsi, Mostafa AU - Malek, Alaeddin TI - Solving a class of Hamilton-Jacobi-Bellman equations using pseudospectral methods JO - Kybernetika PY - 2018 SP - 629 EP - 647 VL - 54 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0629/ DO - 10.14736/kyb-2018-4-0629 LA - en ID - 10_14736_kyb_2018_4_0629 ER -
%0 Journal Article %A Mehrali-Varjani, Mohsen %A Shamsi, Mostafa %A Malek, Alaeddin %T Solving a class of Hamilton-Jacobi-Bellman equations using pseudospectral methods %J Kybernetika %D 2018 %P 629-647 %V 54 %N 4 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0629/ %R 10.14736/kyb-2018-4-0629 %G en %F 10_14736_kyb_2018_4_0629
Mehrali-Varjani, Mohsen; Shamsi, Mostafa; Malek, Alaeddin. Solving a class of Hamilton-Jacobi-Bellman equations using pseudospectral methods. Kybernetika, Tome 54 (2018) no. 4, pp. 629-647. doi: 10.14736/kyb-2018-4-0629
[1] Baltensperger, R., Trummer, M. R.: Spectral differencing with a twist. SIAM J. Sci. Comput. 24 (2003), 1465-1487. | DOI | MR
[2] Beard, R., Saridis, G., Wen, J.: Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation. Automatica 33 (1997), 2159-2177. | DOI | MR
[3] Ben-Asher, J. Z.: Optimal Control Theory with Aerospace Applications. American Institute of Aeronautics and Astronautics, Reston 2010. | DOI
[4] Boyd, J. P.: Chebyshev and Fourier Spectral Methods. Second revised edition. Dover Publications, New York 2001. | MR
[5] Boyd, J. P., Petschek, R.: The relationships between Chebyshev, Legendre and Jacobi polynomials: the generic superiority of Chebyshev polynomials and three important exceptions. J. Scientific Comput. 59 (2014), 1-27. | DOI | MR
[6] Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A.: Spectral Methods in Fluid Dynamics. Springer-Verlag, Berlin 1987. | DOI | MR
[7] Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A.: Spectral Methods: Fundamentals in Single Domains. Springer-Verlag, Berlin 2006. | MR
[8] Cristiani, E., Martinon, P.: Initialization of the shooting method via the Hamilton-Jacobi-Bellman approach. J. Optim. Theory Appl. 146 (2010), 321-346. | DOI | MR
[9] Dai, R., Jr, J. Cochran: Wavelet collocation method for optimal control problems. J. Optim. Theory Appl. 143 (2009), 265–278. | DOI | MR
[10] Elnagar, G., Kazemi, M. A., Razzaghi, M.: The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans. Automat. Control 40 (1995), 1793-1796. | DOI | MR
[11] Fahroo, F., Ross, I. M.: Direct trajectory optimization by a Chebyshev pseudospectral method. J. Guid. Control Dynam. 25 (2002), 160-166. | DOI
[12] Foroozandeh, Z., Shamsi, M., Azhmyakov, V., Shafiee, M.: A modified pseudospectral method for solving trajectory optimization problems with singular arc. Math. Methods Appl. Sci. 40 (2017), 1783-1793. | DOI | MR
[13] Funaro, D.: Polynomial Approximation of Differential Equations. Springer-Verlag, Berlin 1992. | DOI | MR
[14] Hanert, E., Piret, C.: A Chebyshev pseudospectral method to solve the space-time tempered fractional diffusion equation. SIAM J. Scientif. Comput. 36 (2014), A1797-A1812. | DOI | MR
[15] Huang, J., Lin, C. F.: Numerical approach to computing nonlinear $ H_\infty $ control laws. J. Guid. Control Dynam. 18 (1995), 989-994. | DOI
[16] Huang, C. S., Wang, S., Chen, C. S., Li, Z. C.: A radial basis collocation method for Hamilton-Jacobi-Bellman equations. Automatica 42 (2006), 2201-2207. | DOI | MR
[17] Kang, W., Bedrossian, N.: Pseudospectral optimal control theory makes debut flight, Saves {NASA} 1m in Under Three Hours. SIAM News 40 (2007).
[18] Kang, W., Gong, Q., Ross, I. M., Fahroo, F.: On the convergence of nonlinear optimal control using pseudospectral methods for feedback linearizable systems. Int. J. Robust Nonlin. 17 (2007), 1251-1277. | DOI | MR
[19] Kirk, D. E.: Optimal Control Therory: An Introduction. Prentice-Hall, New Jersey 1970.
[20] Kleinman, D.: On an iterative technique for Riccati equation computations. IEEE Trans. Automat. Control 13 (1968), 114-115. | DOI
[21] Lancaster, P., Rodman, L.: Algebraic Riccati Equations. Clarendon, Wotton-under-Edge 1995. | MR
[22] Lewis, F. L., Syrmos, V. L.: Optimal Control. John Wiley, New York 1995. | MR
[23] Liberzon, D.: Calculus of Variations and Optimal Control Theory. Princeton University Press 2012. | MR
[24] Nagy, Z. K., Braatz, R D.: Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis. J. Process Control. 14 (2004), 411-422. | DOI
[25] Nik, H. S., Shateyi, S.: Application of optimal HAM for finding feedback control of optimal control problems. Math. Probl. Eng. 2013 (2013), 1-10. | DOI | MR
[26] Orszag, S. A.: Comparison of pseudospectral and spectral approximation. Stud. Appl. Math. 51 (1972), 253-259. | DOI
[27] Parand, K., Rezaei, A. R., Ghaderi, S. M.: A modified pseudospectral scheme for accurate solution of Bang-Bang optimal control problems. Comm. Nonlinear Sci. Numer. Simul. 16 (2011), 274-283. | DOI | MR
[28] Rakhshan, S. A., Effati, S., Kamyad, A. Vahidian: Solving a class of fractional optimal control problems by the Hamilton-Jacobi-Bellman equation. J. Vib. Control 1 (2016), 1-16. | MR
[29] Reisinger, C., Forsyth, P. A.: Piecewise constant policy approximations to Hamilton-Jacobi-Bellman equations. Appl. Numer. Math. 103 (2016), 27-47. | DOI | MR
[30] Ross, I. M., Fahroo, F.: Pseudospectral knotting methods for solving nonsmooth optimal control problems. J. Guid. Control Dynam. 27 (2004), 397-405. | DOI
[31] Sabeh, Z., Shamsi, M., Dehghan, M.: Distributed optimal control of the viscous Burgers equation via a Legendre pseudo-spectral approach.
[32] Taher, A. H. Saleh, Malek, A., Momeni-Masuleh, S. H.: Chebyshev differentiation matrices for efficient computation of the eigenvalues of fourth-order Sturm-Liouville problems. Appl. Math. Model. 37 (2013), 4634-4642. | DOI | MR
[33] Schafer, R. D.: An Introduction to Nonassociative Algebras. Stillwater, Oklahoma 1969.
[34] Shamsi, M.: A modified pseudospectral scheme for accurate solution of Bang-Bang optimal control problems. Optimal Control Appl. Methods 32 (2010), 668-680. | DOI | MR
[35] Shamsi, M., Dehghan, M.: Determination of a control function in three-dimensional parabolic equations by Legendre pseudospectral method. Numer. Methods Partial Differential Equations 28 (2012), 74-93. | DOI | MR
[36] Swaidan, W., Hussin, A.: Feedback control method using Haar wavelet operational matrices for solving optimal control problems. Abs. Appl. Anal. 2013 (2013), 1-8. | DOI | MR
[37] Trefethen, L. N.: Spectral Methods in Matlab. SIAM, Philadelphia 2000. | DOI | MR
[38] Vlassenbroeck, J., Doreen, R. Van: A Chebyshev technique for solving nonlinear optimal control problems. IEEE Trans. Automat. Control 33 (1988), 333-340. | DOI | MR
[39] Wang, S., Gao, F., Teo, K. L.: An upwind finite-difference method for the approximation of viscosity solutions to Hamilton-Jacobi-Bellman equations. IMA J. Math. Control I. 17 (2000), 167-178. | DOI | MR
[40] Yan, Zh., Wang, J.: Model predictive control of nonlinear systems with unmodeled dynamics based on feedforward and recurrent neural networks. IEEE Trans. Ind. Informat. 8 (2012), 746-756. | DOI
[41] Yershov, D. S., Frazzoli, E.: Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement. Int. J. Robot. Res. 35 (2016), 565-584. | DOI
[42] Yong, J., Zhou, X. Y.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag, New York 1999. | MR
Cité par Sources :