Upper bound estimation of the spectral abscissa for switched linear systems via coordinate transformations
Kybernetika, Tome 54 (2018) no. 3, pp. 576-592
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we develop computational procedures to approximate the spectral abscissa of the switched linear system via square coordinate transformations. First, we design iterative algorithms to obtain a sequence of the least $\mu_1$ measure. Second, it is shown that this sequence is convergent and its limit can be used to estimate the spectral abscissa. Moreover, the stopping condition of Algorithm 1 is also presented. Finally, an example is carried out to illustrate the effectiveness of the proposed method.
In this paper, we develop computational procedures to approximate the spectral abscissa of the switched linear system via square coordinate transformations. First, we design iterative algorithms to obtain a sequence of the least $\mu_1$ measure. Second, it is shown that this sequence is convergent and its limit can be used to estimate the spectral abscissa. Moreover, the stopping condition of Algorithm 1 is also presented. Finally, an example is carried out to illustrate the effectiveness of the proposed method.
DOI : 10.14736/kyb-2018-3-0576
Classification : 93D20
Keywords: switched linear systems; matrix set measure; spectral abscissa; coordinate transformations
@article{10_14736_kyb_2018_3_0576,
     author = {Lin, Meili and Sun, Zhendong},
     title = {Upper bound estimation of the spectral abscissa for switched linear systems via coordinate transformations},
     journal = {Kybernetika},
     pages = {576--592},
     year = {2018},
     volume = {54},
     number = {3},
     doi = {10.14736/kyb-2018-3-0576},
     mrnumber = {3844833},
     zbl = {06987023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-3-0576/}
}
TY  - JOUR
AU  - Lin, Meili
AU  - Sun, Zhendong
TI  - Upper bound estimation of the spectral abscissa for switched linear systems via coordinate transformations
JO  - Kybernetika
PY  - 2018
SP  - 576
EP  - 592
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-3-0576/
DO  - 10.14736/kyb-2018-3-0576
LA  - en
ID  - 10_14736_kyb_2018_3_0576
ER  - 
%0 Journal Article
%A Lin, Meili
%A Sun, Zhendong
%T Upper bound estimation of the spectral abscissa for switched linear systems via coordinate transformations
%J Kybernetika
%D 2018
%P 576-592
%V 54
%N 3
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-3-0576/
%R 10.14736/kyb-2018-3-0576
%G en
%F 10_14736_kyb_2018_3_0576
Lin, Meili; Sun, Zhendong. Upper bound estimation of the spectral abscissa for switched linear systems via coordinate transformations. Kybernetika, Tome 54 (2018) no. 3, pp. 576-592. doi: 10.14736/kyb-2018-3-0576

[1] Barabanov, N.: Ways to compute the Lyapunov index for differential nesting. Automat. Remote Control 50 (1989), 4, 475-479. | DOI | MR

[2] Blanchini, F.: The gain scheduling and the robust state feedback stabilization problems. IEEE Trans. Automat. Control 45 (2000), 11, 2061-2070. | DOI | MR

[3] Dayawansa, W., Martin, C.: A converse Lyapunov theorem for a class of dynamical systems which undergo switching. IEEE Trans. Automat. Control 44 (1999), 4, 751-760. | DOI | MR

[4] Chitour, Y., Mason, P., Sigalotti, M.: On the marginal instability of linear switched systems. Systems Control Lett. 61 (2012), 747-757. | DOI | MR

[5] Gurvits, L.: Stability of discrete linear inclusions. Linear Algebra Appl. 231 (1995), 47-85. | DOI | MR

[6] Johansson, M.: Piecewise Linear Control Systems. Springer, New York 2003. | DOI | MR

[7] Johansson, M., Rantzer, A.: Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Trans. Automat. Control 43 (1998), 4, 555-559. | DOI | MR

[8] Liberzon, D., Hespanha, J., Morse, A.: Stability of switched systems: A Lie-algebraic condition. Systems Control Lett. 37 (1999), 117-122. | DOI | MR

[9] Lin, M., Sun, Z.: Approximating the spectral abscissa for switched linear systems via coordinate transformations. J. Systems Science Complexity 29 (2016), 2, 350-366. | DOI | MR

[10] Molchanov, A., Pyatnitskiy, Y.: Criteria of asymptotic stability of differential and difference inclusions encountered in control theory. Systems Control Lett. 13 (1989), 1, 59-64. | DOI | MR

[11] Morse, A.: Supervisory control of families of linear set-point controllers {Part I.} {Exact} matching. IEEE Trans. Automat. Control 41 (1996), 10, 1413-1431. | DOI | MR

[12] Narendra, K., Balakrishnan, J.: A common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE Trans. Automat. Control 39 (1994), 12, 2469-2471. | DOI | MR

[13] Nedic, A., Ozdaglar, A.: Subgradient methods for saddle-point problems. J. Optim. Theory Appl. 1 (2009), 205-228. | DOI | MR

[14] Parrilo, P., Jadbabaie, A.: Approximation of the joint spectral radius using sum of squares. Linear Algebra Appl. 428 (2008), 10, 2385-2402. | DOI | MR

[15] Protasov, V., Jungers, R.: Analysing the stability of linear systems via exponential Chebyshev polynomials. IEEE Trans. Automat. Control 61 (2016), 3, 795-798. | DOI | MR

[16] Shih, M., Wu, J., Pang, C.: Asymptotic stability and generalized Gelfand spectral radius formula. Linear Algebra Appl. 252 (1997), 61-70. | DOI | MR

[17] Sun, Z.: A note on marginal stability of switched systems. IEEE Trans. Automat. Control 53 (2008), 2, 625-631. | DOI | MR

[18] Sun, Z.: Matrix measure approach for stability of switched linear systems. In: 7th IFAC Symposium Nonlinear Control System, Pretoria 2007.

[19] Shorten, R., Narendra, K.: On common quadratic Lapunov functions for pairs of stable LTI systems whose system matrices are in companion form. IEEE Trans. Automat. Control 48 (2003), 4, 618-621. | DOI | MR

[20] Sun, Z., Ge, S.: Stability Theory of Switched Dynamical Systems. Springer-Verlag, London 2011. | DOI | MR

[21] Xiong, J., Sun, Z.: Approximation of extreme measure for switched linear systems. In: 9th IEEE International Conference on Control and Automation, Santiago 2011. | DOI

Cité par Sources :