Keywords: switched linear systems; matrix set measure; spectral abscissa; coordinate transformations
@article{10_14736_kyb_2018_3_0576,
author = {Lin, Meili and Sun, Zhendong},
title = {Upper bound estimation of the spectral abscissa for switched linear systems via coordinate transformations},
journal = {Kybernetika},
pages = {576--592},
year = {2018},
volume = {54},
number = {3},
doi = {10.14736/kyb-2018-3-0576},
mrnumber = {3844833},
zbl = {06987023},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-3-0576/}
}
TY - JOUR AU - Lin, Meili AU - Sun, Zhendong TI - Upper bound estimation of the spectral abscissa for switched linear systems via coordinate transformations JO - Kybernetika PY - 2018 SP - 576 EP - 592 VL - 54 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-3-0576/ DO - 10.14736/kyb-2018-3-0576 LA - en ID - 10_14736_kyb_2018_3_0576 ER -
%0 Journal Article %A Lin, Meili %A Sun, Zhendong %T Upper bound estimation of the spectral abscissa for switched linear systems via coordinate transformations %J Kybernetika %D 2018 %P 576-592 %V 54 %N 3 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-3-0576/ %R 10.14736/kyb-2018-3-0576 %G en %F 10_14736_kyb_2018_3_0576
Lin, Meili; Sun, Zhendong. Upper bound estimation of the spectral abscissa for switched linear systems via coordinate transformations. Kybernetika, Tome 54 (2018) no. 3, pp. 576-592. doi: 10.14736/kyb-2018-3-0576
[1] Barabanov, N.: Ways to compute the Lyapunov index for differential nesting. Automat. Remote Control 50 (1989), 4, 475-479. | DOI | MR
[2] Blanchini, F.: The gain scheduling and the robust state feedback stabilization problems. IEEE Trans. Automat. Control 45 (2000), 11, 2061-2070. | DOI | MR
[3] Dayawansa, W., Martin, C.: A converse Lyapunov theorem for a class of dynamical systems which undergo switching. IEEE Trans. Automat. Control 44 (1999), 4, 751-760. | DOI | MR
[4] Chitour, Y., Mason, P., Sigalotti, M.: On the marginal instability of linear switched systems. Systems Control Lett. 61 (2012), 747-757. | DOI | MR
[5] Gurvits, L.: Stability of discrete linear inclusions. Linear Algebra Appl. 231 (1995), 47-85. | DOI | MR
[6] Johansson, M.: Piecewise Linear Control Systems. Springer, New York 2003. | DOI | MR
[7] Johansson, M., Rantzer, A.: Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Trans. Automat. Control 43 (1998), 4, 555-559. | DOI | MR
[8] Liberzon, D., Hespanha, J., Morse, A.: Stability of switched systems: A Lie-algebraic condition. Systems Control Lett. 37 (1999), 117-122. | DOI | MR
[9] Lin, M., Sun, Z.: Approximating the spectral abscissa for switched linear systems via coordinate transformations. J. Systems Science Complexity 29 (2016), 2, 350-366. | DOI | MR
[10] Molchanov, A., Pyatnitskiy, Y.: Criteria of asymptotic stability of differential and difference inclusions encountered in control theory. Systems Control Lett. 13 (1989), 1, 59-64. | DOI | MR
[11] Morse, A.: Supervisory control of families of linear set-point controllers {Part I.} {Exact} matching. IEEE Trans. Automat. Control 41 (1996), 10, 1413-1431. | DOI | MR
[12] Narendra, K., Balakrishnan, J.: A common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE Trans. Automat. Control 39 (1994), 12, 2469-2471. | DOI | MR
[13] Nedic, A., Ozdaglar, A.: Subgradient methods for saddle-point problems. J. Optim. Theory Appl. 1 (2009), 205-228. | DOI | MR
[14] Parrilo, P., Jadbabaie, A.: Approximation of the joint spectral radius using sum of squares. Linear Algebra Appl. 428 (2008), 10, 2385-2402. | DOI | MR
[15] Protasov, V., Jungers, R.: Analysing the stability of linear systems via exponential Chebyshev polynomials. IEEE Trans. Automat. Control 61 (2016), 3, 795-798. | DOI | MR
[16] Shih, M., Wu, J., Pang, C.: Asymptotic stability and generalized Gelfand spectral radius formula. Linear Algebra Appl. 252 (1997), 61-70. | DOI | MR
[17] Sun, Z.: A note on marginal stability of switched systems. IEEE Trans. Automat. Control 53 (2008), 2, 625-631. | DOI | MR
[18] Sun, Z.: Matrix measure approach for stability of switched linear systems. In: 7th IFAC Symposium Nonlinear Control System, Pretoria 2007.
[19] Shorten, R., Narendra, K.: On common quadratic Lapunov functions for pairs of stable LTI systems whose system matrices are in companion form. IEEE Trans. Automat. Control 48 (2003), 4, 618-621. | DOI | MR
[20] Sun, Z., Ge, S.: Stability Theory of Switched Dynamical Systems. Springer-Verlag, London 2011. | DOI | MR
[21] Xiong, J., Sun, Z.: Approximation of extreme measure for switched linear systems. In: 9th IEEE International Conference on Control and Automation, Santiago 2011. | DOI
Cité par Sources :