The dynamic behaviors of a new impulsive predator prey model with impulsive control at different fixed moments
Kybernetika, Tome 54 (2018) no. 3, pp. 522-541
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we propose a new impulsive predator prey model with impulsive control at different fixed moments and analyze its interesting dynamic behaviors. Sufficient conditions for the globally asymptotical stability of the semi-trivial periodic solution and the permanence of the present model are obtained by Floquet theory of impulsive differential equation and small amplitude perturbation skills. Existences of the "infection-free" periodic solution and the "predator-free" solution are analyzed by bifurcation theory of impulsive differential equation. Finally, the analytical results presented in the work are validated by numerical simulation figures for this proposed model.
In this paper, we propose a new impulsive predator prey model with impulsive control at different fixed moments and analyze its interesting dynamic behaviors. Sufficient conditions for the globally asymptotical stability of the semi-trivial periodic solution and the permanence of the present model are obtained by Floquet theory of impulsive differential equation and small amplitude perturbation skills. Existences of the "infection-free" periodic solution and the "predator-free" solution are analyzed by bifurcation theory of impulsive differential equation. Finally, the analytical results presented in the work are validated by numerical simulation figures for this proposed model.
DOI : 10.14736/kyb-2018-3-0522
Classification : 34D23, 92D30
Keywords: impulsive differential equation; bifurcation theory; stability; impulsive control; persistence and extinction
@article{10_14736_kyb_2018_3_0522,
     author = {Wang, Lin Jun and Xie, You Xiang and Deng, Qi Cheng},
     title = {The dynamic behaviors of a new impulsive predator prey model with impulsive control at different fixed moments},
     journal = {Kybernetika},
     pages = {522--541},
     year = {2018},
     volume = {54},
     number = {3},
     doi = {10.14736/kyb-2018-3-0522},
     mrnumber = {3844830},
     zbl = {06987020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-3-0522/}
}
TY  - JOUR
AU  - Wang, Lin Jun
AU  - Xie, You Xiang
AU  - Deng, Qi Cheng
TI  - The dynamic behaviors of a new impulsive predator prey model with impulsive control at different fixed moments
JO  - Kybernetika
PY  - 2018
SP  - 522
EP  - 541
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-3-0522/
DO  - 10.14736/kyb-2018-3-0522
LA  - en
ID  - 10_14736_kyb_2018_3_0522
ER  - 
%0 Journal Article
%A Wang, Lin Jun
%A Xie, You Xiang
%A Deng, Qi Cheng
%T The dynamic behaviors of a new impulsive predator prey model with impulsive control at different fixed moments
%J Kybernetika
%D 2018
%P 522-541
%V 54
%N 3
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-3-0522/
%R 10.14736/kyb-2018-3-0522
%G en
%F 10_14736_kyb_2018_3_0522
Wang, Lin Jun; Xie, You Xiang; Deng, Qi Cheng. The dynamic behaviors of a new impulsive predator prey model with impulsive control at different fixed moments. Kybernetika, Tome 54 (2018) no. 3, pp. 522-541. doi: 10.14736/kyb-2018-3-0522

[1] Baek, H. K.: Qualitative analysis of Beddington-Deangelis type impulsive predator-prey models. Nonlinear Anal. Real World Appl. 11 (2010), 1312-1322. | DOI | MR

[2] Benchohra, M., Henderson, J., Ntouyas, S. K.: Impulsive Differential Equations and Inclusions, Vol. 2. Hindawi Publishing Corporation, New York 2006. | DOI | MR

[3] Chen, L. J., Chen, F. D.: Dynamic behaviors of the periodic predator-prey system with distributed time delays and impulsive effect. Nonlinear Anal. Real World Appl. 12 (2011), 2467-2473. | DOI | MR

[4] Debsis, M.: Persistence and global stability of population in a polluted environment with delay. J. Biol. Syst. 10 (2002), 225-232. | DOI

[5] Dubey, B.: Modelling the interaction of biological species in polluted environment. J. Math. Anal. Appl. (2000), 58-79. | DOI

[6] Gao, S. J., Chen, L. S., Nieto, J. J., Torres, A.: Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine 24 (2006), 6037-6045. | DOI | MR

[7] Guo, H. J., Chen, L. S.: The effects of impulsive harvest on a predator-prey system with distributed time delay. Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 5, 2301-2309. | DOI | MR

[8] Hadeler, K. P., Freedman, H. I.: Predator-prey population with parasite infection. J. Math. Biol. 27 (1989), 609-631. | DOI | MR

[9] Jin, Z., Haque, M., Liu, Q. X.: Pulse vaccination in the periodic infection rate SIR epidemic model. Int. J. Biomath. 1 (2008), 409-432. | DOI | MR

[10] Hui, J., Chen, L.: Dynamic complexities in a periodically pulsed ratio-dependent predator-prey ecosystem modeled on a chemostat. Chaos Solitons Fractals 29 (2006), 407-416. | DOI | MR

[11] Jiang, X. W., Song, Q., Hao, M. Y.: Dynamics behaviors of a delayed stage-structured predator-prey model with impulsive effect. Appl. Math. Comput. 215 (2010), 4221-4229. | DOI | MR

[12] Jiao, J. J., Cai, S. H., Li, L. M.: Dynamics of a periodic switched predator-prey system with impulsive harvesting and hibernation of prey population. J. Franklin Inst. 353 (2016), 3818-3834. | DOI | MR

[13] Jiao, J. J., Yang, X. S., Chen, L. S., Cai, S. H.: Effect of delayed response in growth on the dynamics of a chemostat model with impulsive input. Chaos Solitons Fractals 42 (2009), 2280-2287. | DOI | MR

[14] Lakmeche, A.: Birfurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment. Dynam. Contin. Discrete Impuls. 7 (2000), 265-287. | MR

[15] Lakshmikantham, V., Bainov, D., Simeonov, P.: Theory of Impulsive Differential Equations. World Scientific Publisher, Singapore 1989, pp. 27-66. | MR | Zbl

[16] Li, Y.F., Cui, J. A.: The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage. Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 2353-2365. | DOI | MR

[17] Li, Y. F., Cui, J. A., Song, X. Y.: Dynamics of a predator-prey system with pulses. Appl. Math. Comput. 204 (2008), 269-280. | DOI | MR

[18] Liu, Z. J., Chen, L. S.: Periodic solution of a two-species competitive system with toxicant and birth pulse. Chaos Solitons Fract. 32 (2007), 1703-1712. | DOI | MR

[19] Liu, B., Teng, Z. D., Chen, L. S.: The effect of impulsive spraying pesticide on stage-structured population models with birth pulse. J. Biol. Syst. 13 (2005), 31-44. | DOI | MR

[20] Liu, B., Zhang, L.: Dynamics of a two-species Lotka-Volterra competition system in a polluted environment with pulse toxicant input. Appl. Math. Comput. 214 (2009), 155-162. | DOI | MR

[21] Meng, X. Z., Chen, L. S., Chen, H. D.: Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination. Appl. Math. Comput. 186 (2008), 516-529. | DOI | MR

[22] Meng, X. Z., Li, Z. Q., Nieto, J. J.: Dynamic analysis of michaelis-menten chemostat-type competition models with time delay and pulse in a polluted environment. J. Math. Chem. 47 (2009), 123-144. | DOI | MR

[23] Nieto, J. J., O'Regan, D.: Variational approach to impulsive differential equations. Nonlinear Anal. Real World Appl. 10 (2009), 680-690. | DOI | MR

[24] Panetta, J. C.: A mathematical model of periodically pulsed chemotheapy: tumor recurrence and metastasis in a competition environment. Bull. Math. Biol. 58 (1996), 425-447. | DOI

[25] Rhodes, C. J., Anderson, R. M.: Forest-fire as a model for the dynamics of disease epidemics. J. Franklin Inst. 335 (1998), 199-211. | DOI | MR

[26] Sun, K. B., Zhang, T. H., Tian, Y.: Dynamics analysis and control optimization of a pest management predator-prey model with an integrated control strategy. Appl. Math. Comput. 292 (2017), 253-371. | DOI | MR

[27] Sun, K. B., Zhang, T. H., Tian, Y.: Theoretical study and control optimization of an integrated pest management predator-prey model with power growth rate. Math. Biosci. 279 (2016), 13-26. | DOI | MR

[28] Wang, L. M., Chen, L. S., Nieto, J. J.: The dynamics of an epidemic model for pest control with impulsive effect. J. Nonlinear Anal. Real World Appl. 11 (2010), 1374-1386. | DOI | MR

[29] Wang, L., Liu, Z., Hui, J., Chen, L.: Impulsive diffusion in single species model. Chaos Solitons Fractals 33 (2007), 1213-1219. | DOI | MR

[30] Wang, L. J., Xie, Y. X., Fu, J. Q.: The dynamics of natural mortality for pest control model with impulsive effect. J. Franklin Inst. 350 (2013), 1443-1461. | DOI | MR

[31] Wu, R. H., Zou, X. L., Wang, K.: Asymptotic behavior of a stochastic non-autonomous predator-prey model with impulsive perturbations. Commun. Nonlinear Sci. Numer. Simul. 20 (2015), 965-974. | DOI | MR

[32] Xiao, Y., Bosch, F. V. D.: The dynamics of an eco-epidemic model with bio-logical control. Ecol. Model. 168 (2003), 203-214. | DOI

[33] Xiao, Y., Chen, L.: Modelling and analysis of a predator-prey model with disease in the prey. Math. Biosci. 171 (2001), 59-82. | DOI | MR

[34] Xiao, Y. N., Chen, L. S.: Effects of toxicant on a stage-structured population growth model. Appl. Math. Comput. 123 (2001), 63-73. | DOI | MR

[35] Xie, Y. X., Wang, L. J., Deng, Q. C., Wu, Z. J.: The dynamics of an impulsive predator-prey model with communicable disease in the prey species only. Appl. Math. Comput. 292 (2017), 320-335. | DOI | MR

[36] Xie, Y. X., Yuan, Z. H., Wang, L. J.: Dynamic analysis of pest control model with population dispersal in two patches and impulsive effect. J. Comput. Sci. 5 (2014), 685-695. | DOI | MR

[37] Zhang, H., Chen, L. S., Nieto, J. J.: A delayed epidemic model with stage-structureand pulses for pest management strategy. Nonlinear Anal. Real World Probl. 9 (2008), 1714-1726. | DOI | MR

[38] Zhang, S. W., Tan, D. J.: Dynamics of a stochastic predator-prey system in a polluted environment with pulse toxicant input and impulsive perturbations. Appl. Math. Modelling 39 (2015), 6319-6331. | DOI | MR

[39] Zuo, W. J., Jiang, D. Q.: Periodic solutions for a stochastic non-autonomous Holling-Tanner predator-prey system with impulses. Nonlinear Analysis: Hybrid Systems 22 (2016), 191-201. | DOI | MR

Cité par Sources :