Keywords: converse Lyapunov theorem; practical asymptotic stability; impulsive systems; cascade systems; perturbed systems
@article{10_14736_kyb_2018_3_0496,
author = {Ghanmi, Boulbaba and Dlala, Mohsen and Hammami, Mohamed Ali},
title = {Converse theorem for practical stability of nonlinear impulsive systems and applications},
journal = {Kybernetika},
pages = {496--521},
year = {2018},
volume = {54},
number = {3},
doi = {10.14736/kyb-2018-3-0496},
mrnumber = {3844829},
zbl = {06987019},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-3-0496/}
}
TY - JOUR AU - Ghanmi, Boulbaba AU - Dlala, Mohsen AU - Hammami, Mohamed Ali TI - Converse theorem for practical stability of nonlinear impulsive systems and applications JO - Kybernetika PY - 2018 SP - 496 EP - 521 VL - 54 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-3-0496/ DO - 10.14736/kyb-2018-3-0496 LA - en ID - 10_14736_kyb_2018_3_0496 ER -
%0 Journal Article %A Ghanmi, Boulbaba %A Dlala, Mohsen %A Hammami, Mohamed Ali %T Converse theorem for practical stability of nonlinear impulsive systems and applications %J Kybernetika %D 2018 %P 496-521 %V 54 %N 3 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-3-0496/ %R 10.14736/kyb-2018-3-0496 %G en %F 10_14736_kyb_2018_3_0496
Ghanmi, Boulbaba; Dlala, Mohsen; Hammami, Mohamed Ali. Converse theorem for practical stability of nonlinear impulsive systems and applications. Kybernetika, Tome 54 (2018) no. 3, pp. 496-521. doi: 10.14736/kyb-2018-3-0496
[1] Bacciotti, A., Rosier, L.: Lyapunov and Lagrange stability: Inverse theorems for discontinuous systems. Math. Control Signals Systems 11 (1998), 101-128. | DOI | MR
[2] Bainov, D. D., Simeonov, P. S.: Systems with Impulse Effect: Stability, Theory, and Applications. Ellis Horwood, Chichester 1989. | MR
[3] Benabdallah, A., Ellouze, I., Hammami, M. A.: Practical stability of nonlinear time-varying cascade systems. J. Dynamical Control Systems 15 (2009), 45-62. | DOI | MR
[4] Benabdallah, A., Dlala, M., Hammami, M. A.: A new Lyapunov function for stability of time-varying nonlinear perturbed systems. Systems Control Lett. 56 (2007), 179-187. | DOI | MR
[5] Hamed, B. Ben, Ellouze, I., Hammami, M. A.: Practical uniform stability of nonlinear differential delay equations. Mediterranean J. Math. 8 (2011), 603-616. | DOI | MR
[6] Hamed, B. Ben, Hammami, M. .A: Practical stabilization of a class of uncertain time-varying nonlinear delay systems. J. Control Theory Appl. 7 (2009), 175-180. | DOI | MR
[7] Cai, C., Teel, A., Goebel, R.: Smooth Lyapunov functions for hybrid systems, Part I: Existence is equivalent to robustness. IEEE Trans. Automat. Control 52 (2007), 7, 1264-1277. | DOI | MR
[8] Corless, M.: Guaranteed rates of exponential convergence for uncertain systems. J. Optim. Theory Appl. 64 (1990), 481-494. | DOI | MR
[9] Dlala, M., Ghanmi, B., Hammami, M. A: Exponential practical stability of nonlinear impulsive systems: converse theorem and applications. Dynamics Continuous Discrete Impulsive Systems 21 (2014), 37-64. | MR
[10] Dlala, M., Hammami, M. A.: Uniform exponential practical stability of impulsive perturbed systems. J. Dynamical Control Systems 13 (2007), 373-386. | DOI | MR
[11] Giesl, P., Hafstein, S.: Review on computational methods for Lyapunov functions. Discrete Continuous Dynamical Systems: Series B 20 (2015), 2291-2331. | DOI | MR
[12] Gordon, S. P.: On converse to the stability theorems for difference equations. SIAM J. Control Optim. 10 (1972), 76-81. | DOI | MR
[13] Hahn, W.: Stability of Motion. Springer-Verlag, 1967. | DOI | MR | Zbl
[14] Isidori, A.: Nonlinear Control Systems. Second edition. Springer-Verlag, 1989. | DOI | MR
[15] Kellett, C.: Converse Theorems in lyapunov's second method. Discrete Continuous Dynamical Systems: Series B 20 (2015), 2333-2360. | DOI | MR
[16] Jiang, Z. P., Teel, A. R., Praly, L.: Small gain theorem for ISS systems and applications. Math. Control, Signals Systems 7 (1995), 95-120. | DOI | MR
[17] Wang, Y.: A converse Lyapunov theorem for discrete-time systems with disturbances. Systems Control Lett, 45 (2002), 49-58. | DOI | MR
[18] Khalil, H. K.: Nonlinear Systems. Third edition. Macmillan Publishing Company, 2002. | MR
[19] Lakshmikantham, V., Leela, S., Martynyuk, A. A.: Practical Stability of Nonlinear Systems. World Scientific, Singapore 1990. | DOI | MR
[20] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations. Series in Modern Applied Mathematics. Singapore and Teaneck, World Scientific, NJ 1989. | DOI | MR
[21] LaSalle, J. P., Lefschetz, S.: Stability by Lyapunov's Direct Method with Applications. Academic Press, New York 1961. | DOI | MR
[22] Lin, Y., Sontag, E. D., Wang, Y.: A smooth converse Lyapunov theorem for robust stability. SIAM J. Control Optim. 34 (1996), 124-160. | DOI | MR
[23] Mancilla-Aguilar, J. L., Garcia, R. A.: A converse Lyapunov theorem for nonlinear switch systems. Systems Control Lett. 41 (2000), 67-71. | DOI | MR
[24] Panteley, E., Loria, A.: On global uniform asymptotic stability of non linear time-varying non autonomous systems in cascade. Systems Control Lett. 33 (1998), 131-138. | DOI | MR
[25] Pradalier, C., Siegwart, R., Hirzinger, G.: Robotics Research. Springer-Verlag, Berlin 2011. | DOI
[26] Spong, M. W., Vidyasagar, M.: Robot Dynamics and Control. John Wiley and Sons, Inc, New York 1989.
[27] Spong, M. W.: The control of underactuated mechanical systems. In: First International Conference on Mecatronics, Mexico City 1994.
[28] Tsinias, J.: A converse Lyapunov theorem for nonuniform in time, global exponential robust stability. Systems Control Lett. 44 (2001), 373-384. | DOI | MR
[29] Yang, X.-S.: Existence of unbounded solutions of time varying systems and failure of global asymptotic stability in discrete-time cascade systems. IMA J. Math. Control Inform. 22 (2005), 80-87. | DOI | MR
[30] Yang, T.: Impulsive Control Theory. Springer, 2001. | DOI | MR | Zbl
[31] Yoshizawa, T.: Stability Theory by Lyapunov's Second Method. Mathematical Society of Japan, 1966. | MR
[32] Zubov, V. I.: Methods of A. M. Lyapunov and their Application. P. Noordhoff Ltd, Groningen 1964; translated from the Russian edition of 1957. | MR
Cité par Sources :