Keywords: nonholonomic mechanical systems; chained form; steering control; smooth super twisting sliding mode control and lyapunov function.
@article{10_14736_kyb_2018_3_0476,
author = {Abbasi, Waseem and ur Rehman, Fazal and Shah, Ibrahim},
title = {Smooth super twisting sliding mode based steering control for nonholonomic systems transformable into chained form},
journal = {Kybernetika},
pages = {476--495},
year = {2018},
volume = {54},
number = {3},
doi = {10.14736/kyb-2018-3-0476},
mrnumber = {3844828},
zbl = {06987018},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-3-0476/}
}
TY - JOUR AU - Abbasi, Waseem AU - ur Rehman, Fazal AU - Shah, Ibrahim TI - Smooth super twisting sliding mode based steering control for nonholonomic systems transformable into chained form JO - Kybernetika PY - 2018 SP - 476 EP - 495 VL - 54 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-3-0476/ DO - 10.14736/kyb-2018-3-0476 LA - en ID - 10_14736_kyb_2018_3_0476 ER -
%0 Journal Article %A Abbasi, Waseem %A ur Rehman, Fazal %A Shah, Ibrahim %T Smooth super twisting sliding mode based steering control for nonholonomic systems transformable into chained form %J Kybernetika %D 2018 %P 476-495 %V 54 %N 3 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-3-0476/ %R 10.14736/kyb-2018-3-0476 %G en %F 10_14736_kyb_2018_3_0476
Abbasi, Waseem; ur Rehman, Fazal; Shah, Ibrahim. Smooth super twisting sliding mode based steering control for nonholonomic systems transformable into chained form. Kybernetika, Tome 54 (2018) no. 3, pp. 476-495. doi: 10.14736/kyb-2018-3-0476
[1] Abbassi, W., Rehman, F.: Adaptive integral sliding mode stabilization of nonholonomic drift-free systems. Math. Problems Engrg. 2016 (2016), 1-11. | DOI | MR
[2] Ge, S. sam, Wang, J., Lee, T. heng, Zhou, GY.: Adaptive robust stabilization of dynamic nonholonomic chained systems. J. Field Robotics 18 (2001), 3, 119-133. | DOI
[3] Kolmanovsky, I., McClamroch, N. H.: Developments in nonholonomic control problems. IEEE Control Systems 15 (1995), 6, 20-36. | DOI
[4] Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int, J. Control 76 (2003), 9-10, 924-941. | DOI | MR | Zbl
[5] Zhen-Ying, L., Wang, C-Li.: Robust stabilization of nonholonomic chained form systems with uncertainties. Acta Automat. Sinica 37 (2011), 2, 129-142. | DOI | MR
[6] Li, P., Zheng, Z.: Global finite-time stabilization of planar nonlinear systems with disturbance. Asian J. Control 14 (2012), 3, 851-858. | DOI | MR
[7] Li, Z., Xiao, H., Yang, C., Zhao, Y.: Model predictive control of nonholonomic chained systems using general projection neural networks optimization. IEEE Trans. Systems Man Cybernetics: Systems 45 (2015), 10, 1313-1321. | DOI
[8] Luque-Vega, L., Castillo-Toledo, B., Loukianov, A. G.: Robust block second order sliding mode control for a quadrotor. J. Franklin Inst. 349 (2012), 2, 719-739. | DOI | MR
[9] Mobayen, S.: Fast terminal sliding mode tracking of non-holonomic systems with exponential decay rate. IET Control Theory Appl. 9 (2015), 8, 1294-1301. | DOI | MR
[10] Mobayen, S.: Finite-time tracking control of chained-form nonholonomic systems with external disturbances based on recursive terminal sliding mode method. Nonlinear Dynamics 80 (2015), 1-2, 669-683. | DOI | MR
[11] Mobayen, S., Baleanu, D.: Linear matrix inequalities design approach for robust stabilization of uncertain nonlinear systems with perturbation based on optimally-tuned global sliding mode control. J. Vibration Control 23, (2017), 8, 1285-1295. | DOI | MR
[12] Moreno, J. A., Osorio, M.: A Lyapunov approach to second-order sliding mode controllers and observers. In: Proc. 47th IEEE Conference on Decision and Control 2008, pp. 2856-2861
[13] Moreno, J. A., Osorio, M.: Strict Lyapunov functions for the super-twisting algorithm. IEEE Trans. Automat. Control 57 (2012), 4, 1035-1040. | DOI | MR
[14] Murray, R. M., Sastry, S. S.: Steering nonholonomic systems in chained form. In: Proc. 30th IEEE Conference on Decision and Control 2 (1991), pp. 1121-1126. | DOI | MR
[15] Nagesh, I., Edwards, C.: A multivariable super-twisting sliding mode approachtor: A field-oriented control approach. Automatica 50 (2014), 3, 984-988. | DOI | MR
[16] Picó, J., Picó-Marco, E., Vignoni, A., Battista, H. De: Stability preserving maps for finite-time convergence: super-twisting sliding-mode algorithm. Automatica 49 (2013), 2, 534-539. | DOI | MR
[17] Rehman, F.: Feedback stabilization of nonholonomic control systems using model decomposition. Asian J. Control 7, (2005), 3, 256-265. | DOI
[18] Shtessel, Y. B., Shkolnikov, I. A., Levant, A.: Smooth second-order sliding modes: Missile guidance application. Automatica 43 (2007), 8, 1470-1476. | DOI | MR
[19] Sordalen, O. J., Egeland, O.: Exponential stabilization of nonholonomic chained systems. IEEE Trans. Automat. Control 40 (1995), 1, 35-49. | DOI | MR
[20] Wang, Y., Miao, Z., Zhong, H., Pan, Qi.: Simultaneous stabilization and tracking of nonholonomic mobile robots: A Lyapunov-based approach. IEEE Trans. Control Systems Technol. 23 (2015), 4, 1440-1450. | DOI
[21] Utkin, V., Guldner, J., Shi, J., Ge, S., Lewis, F.: Sliding Mode Control in Electro-mechanical Systems. Second Edition. Boca Raton: CRC Press, 2009. | DOI
Cité par Sources :