Keywords: residuated lattice; De Morgan laws; filter; deductive system; ideal; $\cap $-prime; $\cap $-irreducible; annihilator
@article{10_14736_kyb_2018_3_0443,
author = {Holdon, Liviu-Constantin},
title = {On ideals in {De} {Morgan} residuated lattices},
journal = {Kybernetika},
pages = {443--475},
year = {2018},
volume = {54},
number = {3},
doi = {10.14736/kyb-2018-3-0443},
mrnumber = {3844827},
zbl = {06987017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-3-0443/}
}
Holdon, Liviu-Constantin. On ideals in De Morgan residuated lattices. Kybernetika, Tome 54 (2018) no. 3, pp. 443-475. doi: 10.14736/kyb-2018-3-0443
[1] Balbes, R., Dwinger, Ph.: Distributive Lattices. University of Missouri Press 1974. | MR
[2] Blyth, T. S.: Lattices and Ordered Algebraic Structures. Springer, London 2005. | DOI | MR
[3] Buşneag, C., Piciu, D.: The stable topologies for residuated lattices. Soft Computing 16 (2012), 1639-1655. | DOI
[4] Buşneag, D., Piciu, D., Paralescu, J.: Divisible and semi-divisible residuated lattices. Ann. Alexandru Ioan Cuza University-Mathematics (2013), 14-45. | MR
[5] Buşneag, D., Piciu, D., Holdon, L. C.: Some Properties of Ideals in Stonean residuated lattice. J. Multiple-Valued Logic Soft Computing 24 (2015), 5-6, 529-546. | MR
[6] Cignoli, R.: Free algebras in varieties of Stonean residuated lattices. Soft Computing 12 (2008), 315-320. | DOI
[7] Esteva, F., Godo, L.: Monoidal $t-$norm based logic: towards a logic for left-continnuos $t-$norms. Fuzzy Sets and Systems 124 (2001), 3, 271-288. | DOI | MR
[8] Lele, C., Nganou, J. B.: MV-algebras derived from ideals in BL-algebra. Fuzzy Sets and Systems 218 (2013), 103-113. | DOI | MR
[9] Maroof, F. G., Saeid, A. B., Eslami, E.: On co-annihilators in residuated lattices. J. Intelligent Fuzzy Systems 31 (2016), 1263-1270. | DOI
[10] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: an Algebraic Glimpse at Substructural Logics. Studies in Logics and the Foundations of Mathematics, Elsevier 2007. | MR
[11] Holdon, L. C., Niţu, L. M., Chiriac, G.: Distributive residuated lattices. Ann. University of Craiova-Mathematics and Computer Science Series 39 (2012), 100-109. | MR
[12] Mureşan, C.: Co-stone Residuated Lattices. Ann. University of Craiova-Mathematics and Computer Science Series 40 (2013), 52-75. | DOI | MR
[13] Iorgulescu, A.: Algebras of Logic as BCK-algebras. Academy of Economic Studies Bucharest, Romania 2008. | MR
[14] Leuştean, L.: Baer extensions of BL-algebras. J. Multiple-Valued Logic Soft Computing 12 (2006), 321-335. | MR
[15] Piciu, D.: Algebras of Fuzzy Logic. Editura Universitaria, Craiova 2007.
[16] Rachunek, J., Salounova, D.: Ideals and involutive filters in residuated lattices. In: SSAOS 2014, Stara Lesna.
[17] Turunen, E.: Mathematics Behind Fuzzy logic. Physica-Verlag Heidelberg, New York 1999. | MR
[18] Zou, Y. X., Xin, X. L., He, P. F.: On annihilators in BL-algebras. Open Math. 14 (2016), 324-337. | DOI | MR
Cité par Sources :