Keywords: max-min algebra; interval; eigenspace; simple image set
@article{10_14736_kyb_2018_3_0413,
author = {Plavka, J\'an and Bere\v{z}n\'y, \v{S}tefan},
title = {{\bf {X}-simplicity} of interval max-min matrices},
journal = {Kybernetika},
pages = {413--426},
year = {2018},
volume = {54},
number = {3},
doi = {10.14736/kyb-2018-3-0413},
mrnumber = {3844825},
zbl = {06987015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-3-0413/}
}
TY - JOUR
AU - Plavka, Ján
AU - Berežný, Štefan
TI - {\bf X}-simplicity of interval max-min matrices
JO - Kybernetika
PY - 2018
SP - 413
EP - 426
VL - 54
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-3-0413/
DO - 10.14736/kyb-2018-3-0413
LA - en
ID - 10_14736_kyb_2018_3_0413
ER -
Plavka, Ján; Berežný, Štefan. {\bf X}-simplicity of interval max-min matrices. Kybernetika, Tome 54 (2018) no. 3, pp. 413-426. doi: 10.14736/kyb-2018-3-0413
[1] Butkovič, P.: Simple image set of $(\max,+)$ linear mappings. Discrete Appl. Math. 105 (2000), 73-86. | DOI | MR | Zbl
[2] Butkovič, P.: Max-linear Systems: Theory and Applications. Springer, 2010. | DOI
[3] Butkovič, P., Schneider, H., Sergeev, S.: Recognising weakly stable matrices. SIAM J. Control Optim. 50 (2012), 5, 3029-3051. | DOI | MR
[4] Cechlárová, K.: Efficient computation of the greatest eigenvector in fuzzy algebra. Tatra Mt. Math. Publ. 12 (1997), 73-79. | DOI | MR | Zbl
[5] Nola, A. Di, Gerla, B.: Algebras of Łukasiewicz logic and their semiring reducts. In: Idempotent Mathematics and Mathematical Physics (G. L. Litvinov and V. P. Maslov, eds.), 2005, pp. 131-144. | DOI | MR
[6] Nola, A. Di, Russo, C.: Łukasiewicz transform and its application to compression and reconstruction of digital images. Inform. Sci. 177 (2007), 1481-1498. | DOI | MR | Zbl
[7] Gavalec, M., Zimmermann, K.: Classification of solutions to systems of two-sided equations with interval coefficients. Int. J. Pure Applied Math. 45 (2008), 533-542. | MR | Zbl
[8] Gavalec, M.: Periodicity in Extremal Algebra. Gaudeamus, Hradec Králové 2004.
[9] Gavalec, M., Plavka, J.: Fast algorithm for extremal biparametric eigenproblem. Acta Electrotechnica et Informatica 7 (2007), 3, 1-5.
[10] Golan, J. S.: Semirings and Their Applications. Springer, 1999. | DOI | MR | Zbl
[11] Gondran, M., Minoux, M.: Graphs, Dioids and Semirings: New Models and Algorithms. Springer 2008. | DOI | MR | Zbl
[12] Heidergott, B., Olsder, G.-J., Woude, J. van der: Max-plus at Work. Princeton University Press, 2005. | DOI | MR
[13] Kolokoltsov, V. N., Maslov, V. P.: Idempotent Analysis and its Applications. Kluwer, Dordrecht 1997. | DOI | MR | Zbl
[14] Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, R.: Computational Complexity and Feasibility of Data Processing and Interval Computations. Kluwer Academic Publishers, Dordrecht-Boston-London 1998. | MR | Zbl
[15] Litvinov, G. L., (eds.), V. P. Maslov: Idempotent Mathematics and Mathematical Physics. AMS Contemporary Mathematics 377 (2005). | DOI | MR | Zbl
[16] Litvinov, G. L., (eds.), S. N. Sergeev: Tropical and Idempotent Mathematics. AMS Contemporary Mathematics 495 (2009). | DOI | MR | Zbl
[17] Molnárová, M., Myšková, H., Plavka, J.: The robustness of interval fuzzy matrices. Linear Algebra Appl. 438 (2013), 8, 3350-3364. | DOI | MR
[18] Myšková, H.: Interval eigenvectors of circulant matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 3, 57-61. | DOI
[19] Myšková, H.: Weak stability of interval orbits of circulant matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 3, 51-56. | DOI
[20] Myšková, H.: Robustness of interval toeplitz matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 4, 56-60. | DOI
[21] Plavka, J., Szabó, P.: On the $\lambda$-robustness of matrices over fuzzy algebra. Discrete Applied Math. 159 (2011), 5, 381-388. | DOI | MR | Zbl
[22] Plavka, J., Szabó, P.: The $O(n^2 )$ algorithm for the eigenproblem of an $\epsilon$-triangular Toeplitz matrices in max-plus algebra. Acta Electrotechnica et Informatica 9 (2009), 4, 50-54.
[23] Plavka, J.: On the weak robustness of fuzzy matrices. Kybernetika 49 (2013), 1, 128-140. | MR | Zbl
[24] Plavka, J., Sergeev, S.: Characterizing matrices with $X $-simple image eigenspace in max-min semiring. Kybernetika 52 (2016), 4, 497-513. | DOI | MR
[25] Rohn, J.: Systems of linear interval equations. Linear Algebra and Its Appl.126 (1989), 39-78. | DOI | MR | Zbl
[26] Sanchez, E.: Resolution of eigen fuzzy sets equations. Fuzzy Sets Systems 1 (1978), 69-74. | DOI | MR | Zbl
[27] Sergeev, S.: Max-algebraic attraction cones of nonnegative irreducible matrices. Linear Algebra Appl. 435 (2011), 7, 1736-1757. | DOI | MR | Zbl
[28] Tan, Yi-Jia: Eigenvalues and eigenvectors for matrices over distributive lattices. Linear Algebra Appl. 283 (1998), 257-272. | DOI | MR | Zbl
[29] Tan, Yi-Jia: On the eigenproblem of matrices over distributive lattices. Lin. Algebra Appl. 374 (2003), 87-106. | DOI | MR
[30] Zimmernann, K.: Extremální algebra (in Czech). Ekonomický ústav ČSAV Praha, 1976.
Cité par Sources :