{\bf X}-simplicity of interval max-min matrices
Kybernetika, Tome 54 (2018) no. 3, pp. 413-426
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A matrix $A$ is said to have \mbox{\boldmath$X$}-simple image eigenspace if any eigenvector $x$ belonging to the interval $\mbox{\boldmath$X$}=\{x\colon \underline x\leq x\leq\overline x\}$ containing a constant vector is the unique solution of the system $A\otimes y=x$ in \mbox{\boldmath$X$}. The main result of this paper is an extension of \mbox{\boldmath$X$}-simplicity to interval max-min matrix $\mbox{\boldmath$A$}=\{A\colon \underline A\leq A\leq\overline A\}$ distinguishing two possibilities, that at least one matrix or all matrices from a given interval have \mbox{\boldmath$X$}-simple image eigenspace. \mbox{\boldmath$X$}-simplicity of interval matrices in max-min algebra are studied and equivalent conditions for interval matrices which have \mbox{\boldmath$X$}-simple image eigenspace are presented. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability) that have been studied in max-min and max-plus algebras.
A matrix $A$ is said to have \mbox{\boldmath$X$}-simple image eigenspace if any eigenvector $x$ belonging to the interval $\mbox{\boldmath$X$}=\{x\colon \underline x\leq x\leq\overline x\}$ containing a constant vector is the unique solution of the system $A\otimes y=x$ in \mbox{\boldmath$X$}. The main result of this paper is an extension of \mbox{\boldmath$X$}-simplicity to interval max-min matrix $\mbox{\boldmath$A$}=\{A\colon \underline A\leq A\leq\overline A\}$ distinguishing two possibilities, that at least one matrix or all matrices from a given interval have \mbox{\boldmath$X$}-simple image eigenspace. \mbox{\boldmath$X$}-simplicity of interval matrices in max-min algebra are studied and equivalent conditions for interval matrices which have \mbox{\boldmath$X$}-simple image eigenspace are presented. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability) that have been studied in max-min and max-plus algebras.
DOI : 10.14736/kyb-2018-3-0413
Classification : 08A72, 15A18, 15A80
Keywords: max-min algebra; interval; eigenspace; simple image set
@article{10_14736_kyb_2018_3_0413,
     author = {Plavka, J\'an and Bere\v{z}n\'y, \v{S}tefan},
     title = {{\bf {X}-simplicity} of interval max-min matrices},
     journal = {Kybernetika},
     pages = {413--426},
     year = {2018},
     volume = {54},
     number = {3},
     doi = {10.14736/kyb-2018-3-0413},
     mrnumber = {3844825},
     zbl = {06987015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-3-0413/}
}
TY  - JOUR
AU  - Plavka, Ján
AU  - Berežný, Štefan
TI  - {\bf X}-simplicity of interval max-min matrices
JO  - Kybernetika
PY  - 2018
SP  - 413
EP  - 426
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-3-0413/
DO  - 10.14736/kyb-2018-3-0413
LA  - en
ID  - 10_14736_kyb_2018_3_0413
ER  - 
%0 Journal Article
%A Plavka, Ján
%A Berežný, Štefan
%T {\bf X}-simplicity of interval max-min matrices
%J Kybernetika
%D 2018
%P 413-426
%V 54
%N 3
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-3-0413/
%R 10.14736/kyb-2018-3-0413
%G en
%F 10_14736_kyb_2018_3_0413
Plavka, Ján; Berežný, Štefan. {\bf X}-simplicity of interval max-min matrices. Kybernetika, Tome 54 (2018) no. 3, pp. 413-426. doi: 10.14736/kyb-2018-3-0413

[1] Butkovič, P.: Simple image set of $(\max,+)$ linear mappings. Discrete Appl. Math. 105 (2000), 73-86. | DOI | MR | Zbl

[2] Butkovič, P.: Max-linear Systems: Theory and Applications. Springer, 2010. | DOI

[3] Butkovič, P., Schneider, H., Sergeev, S.: Recognising weakly stable matrices. SIAM J. Control Optim. 50 (2012), 5, 3029-3051. | DOI | MR

[4] Cechlárová, K.: Efficient computation of the greatest eigenvector in fuzzy algebra. Tatra Mt. Math. Publ. 12 (1997), 73-79. | DOI | MR | Zbl

[5] Nola, A. Di, Gerla, B.: Algebras of Łukasiewicz logic and their semiring reducts. In: Idempotent Mathematics and Mathematical Physics (G. L. Litvinov and V. P. Maslov, eds.), 2005, pp. 131-144. | DOI | MR

[6] Nola, A. Di, Russo, C.: Łukasiewicz transform and its application to compression and reconstruction of digital images. Inform. Sci. 177 (2007), 1481-1498. | DOI | MR | Zbl

[7] Gavalec, M., Zimmermann, K.: Classification of solutions to systems of two-sided equations with interval coefficients. Int. J. Pure Applied Math. 45 (2008), 533-542. | MR | Zbl

[8] Gavalec, M.: Periodicity in Extremal Algebra. Gaudeamus, Hradec Králové 2004.

[9] Gavalec, M., Plavka, J.: Fast algorithm for extremal biparametric eigenproblem. Acta Electrotechnica et Informatica 7 (2007), 3, 1-5.

[10] Golan, J. S.: Semirings and Their Applications. Springer, 1999. | DOI | MR | Zbl

[11] Gondran, M., Minoux, M.: Graphs, Dioids and Semirings: New Models and Algorithms. Springer 2008. | DOI | MR | Zbl

[12] Heidergott, B., Olsder, G.-J., Woude, J. van der: Max-plus at Work. Princeton University Press, 2005. | DOI | MR

[13] Kolokoltsov, V. N., Maslov, V. P.: Idempotent Analysis and its Applications. Kluwer, Dordrecht 1997. | DOI | MR | Zbl

[14] Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, R.: Computational Complexity and Feasibility of Data Processing and Interval Computations. Kluwer Academic Publishers, Dordrecht-Boston-London 1998. | MR | Zbl

[15] Litvinov, G. L., (eds.), V. P. Maslov: Idempotent Mathematics and Mathematical Physics. AMS Contemporary Mathematics 377 (2005). | DOI | MR | Zbl

[16] Litvinov, G. L., (eds.), S. N. Sergeev: Tropical and Idempotent Mathematics. AMS Contemporary Mathematics 495 (2009). | DOI | MR | Zbl

[17] Molnárová, M., Myšková, H., Plavka, J.: The robustness of interval fuzzy matrices. Linear Algebra Appl. 438 (2013), 8, 3350-3364. | DOI | MR

[18] Myšková, H.: Interval eigenvectors of circulant matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 3, 57-61. | DOI

[19] Myšková, H.: Weak stability of interval orbits of circulant matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 3, 51-56. | DOI

[20] Myšková, H.: Robustness of interval toeplitz matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 4, 56-60. | DOI

[21] Plavka, J., Szabó, P.: On the $\lambda$-robustness of matrices over fuzzy algebra. Discrete Applied Math. 159 (2011), 5, 381-388. | DOI | MR | Zbl

[22] Plavka, J., Szabó, P.: The $O(n^2 )$ algorithm for the eigenproblem of an $\epsilon$-triangular Toeplitz matrices in max-plus algebra. Acta Electrotechnica et Informatica 9 (2009), 4, 50-54.

[23] Plavka, J.: On the weak robustness of fuzzy matrices. Kybernetika 49 (2013), 1, 128-140. | MR | Zbl

[24] Plavka, J., Sergeev, S.: Characterizing matrices with $X $-simple image eigenspace in max-min semiring. Kybernetika 52 (2016), 4, 497-513. | DOI | MR

[25] Rohn, J.: Systems of linear interval equations. Linear Algebra and Its Appl.126 (1989), 39-78. | DOI | MR | Zbl

[26] Sanchez, E.: Resolution of eigen fuzzy sets equations. Fuzzy Sets Systems 1 (1978), 69-74. | DOI | MR | Zbl

[27] Sergeev, S.: Max-algebraic attraction cones of nonnegative irreducible matrices. Linear Algebra Appl. 435 (2011), 7, 1736-1757. | DOI | MR | Zbl

[28] Tan, Yi-Jia: Eigenvalues and eigenvectors for matrices over distributive lattices. Linear Algebra Appl. 283 (1998), 257-272. | DOI | MR | Zbl

[29] Tan, Yi-Jia: On the eigenproblem of matrices over distributive lattices. Lin. Algebra Appl. 374 (2003), 87-106. | DOI | MR

[30] Zimmernann, K.: Extremální algebra (in Czech). Ekonomický ústav ČSAV Praha, 1976.

Cité par Sources :