Keywords: attainable sets; adaptive thresholding technique; (max;min)-separable equations
@article{10_14736_kyb_2018_2_0400,
author = {Gad, Mahmoud},
title = {Adaptive thresholding technique for solving optimization problems on attainable sets of (max, min)-linear systems},
journal = {Kybernetika},
pages = {400--412},
year = {2018},
volume = {54},
number = {2},
doi = {10.14736/kyb-2018-2-0400},
mrnumber = {3807723},
zbl = {06890428},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-2-0400/}
}
TY - JOUR AU - Gad, Mahmoud TI - Adaptive thresholding technique for solving optimization problems on attainable sets of (max, min)-linear systems JO - Kybernetika PY - 2018 SP - 400 EP - 412 VL - 54 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-2-0400/ DO - 10.14736/kyb-2018-2-0400 LA - en ID - 10_14736_kyb_2018_2_0400 ER -
%0 Journal Article %A Gad, Mahmoud %T Adaptive thresholding technique for solving optimization problems on attainable sets of (max, min)-linear systems %J Kybernetika %D 2018 %P 400-412 %V 54 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-2-0400/ %R 10.14736/kyb-2018-2-0400 %G en %F 10_14736_kyb_2018_2_0400
Gad, Mahmoud. Adaptive thresholding technique for solving optimization problems on attainable sets of (max, min)-linear systems. Kybernetika, Tome 54 (2018) no. 2, pp. 400-412. doi: 10.14736/kyb-2018-2-0400
[1] Butkovič, P.: Max-linear Systems: Theory and Algorithms. Springer Monographs in Mathematics and Springer-Verlag, London - Dodrecht - Heudelberg - New York 2010. | DOI | MR | Zbl
[2] Cuninghame-Green, R. A.: Minimax Algebra, Lecture Notes in Economics and Mathematical Systems. Springer-Verlag 166, Berlin 1979. | DOI | MR
[3] Eremin, I. I., Mazurov, V. D., Astafev, N. N.: Linear Inequalities in mathematical programming and pattern recognition. Ukr. Math. J. 40 (1988), 3, 243-251. Translated from Ukr. Mat. Zh. 40 (1988), 3, 288-297. | DOI | MR
[4] Gad, M.: Optimization problems under one-sided $(\max, \min)$-linear equality constraints. In: WDS'12 Proc. Contributed Papers Part I, 2012, pp. 13-19. 21st Annual Student Conference, Week of Doctoral Students Charles University, Prague 2012.
[5] Gad, M.: Optimization problems under two-sided $(\max, \min)$-linear inequalities constraints. Academic Coordination Centre J. 18 (2012), 4, 84-92. In: International Conference Presentation of Mathematics Conference ICPM'12, Liberec 2012.
[6] Gad, M., Jablonský, J., Zimmermann, K.: Incorrectly posed optimization problems under extremally linear equation constraints. In: Proc. 34th International Conference of Mathematical Methods in Economics MME 2016, Liberec 2016, pp. 231-236.
[7] Gavalec, M., Gad, M., Zimmermann, K.: Optimization problems under $(\max, \min)$-linear equations and / or inequality constraints. J. Math. Sci. 193 (2013), 5, 645-658. Translated from Russian Journal Fundamentalnaya i Prikladnaya Matematika(Fundamental and Applied Mathematics) 17 (2012), 6, 3-21. | DOI
[8] Zimmernann, K.: Extremální algebra (in Czech). Ekon. ústav ČSAV, Praha 1976.
[9] Zimmermann, K., Gad, M.: Optimization problems under one-sided $(\max, +)$-linear constraints. In: Conference Presentation of Mathematics ICPM'11, Liberec 2011, pp. 159-165.
Cité par Sources :