Keywords: extreme value theory; mixing processes; tail index estimation
@article{10_14736_kyb_2018_2_0351,
author = {Ouadjed, Hakim and Mami, Tawfiq Fawzi},
title = {Estimation for heavy tailed moving average process},
journal = {Kybernetika},
pages = {351--362},
year = {2018},
volume = {54},
number = {2},
doi = {10.14736/kyb-2018-2-0351},
mrnumber = {3807720},
zbl = {06890425},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-2-0351/}
}
TY - JOUR AU - Ouadjed, Hakim AU - Mami, Tawfiq Fawzi TI - Estimation for heavy tailed moving average process JO - Kybernetika PY - 2018 SP - 351 EP - 362 VL - 54 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-2-0351/ DO - 10.14736/kyb-2018-2-0351 LA - en ID - 10_14736_kyb_2018_2_0351 ER -
Ouadjed, Hakim; Mami, Tawfiq Fawzi. Estimation for heavy tailed moving average process. Kybernetika, Tome 54 (2018) no. 2, pp. 351-362. doi: 10.14736/kyb-2018-2-0351
[1] Brockwell, P. J., Davis, R. A.: Time Series: Theory and methods. Springer-Verlag, New York 1991. | DOI | MR
[2] Cheng, S., Peng, L.: Confidence intervals for the tail index. Bernoulli 7 (2001), 751-760. | DOI | MR
[3] Drees, H.: Weighted approximations of tail processes for $\beta$-mixing random variables. Ann. Appl. Probab. 10 (2000), 1274-1301. | DOI | MR
[4] Drees, H.: Extreme quantile estimation for dependent data, with applications to finance. Bernoulli 9 (2003), 617-657. | DOI | MR
[5] Fabián, Z., Stehlík, M.: On Robust and Distribution Sensitive Hill Like Method. Tech. Rep. IFAS Reasearch Paper Series 43 (2009).
[6] Feigin, P. D., Kratz, M. F., Resnick, S. I.: Parameter estimation for moving averages with positive innovations. Ann. Appl. Probab. 6 (1996), 1157-1190. | DOI | MR
[7] Ferro, C. A. T., Segers, J.: Inference for clusters of extreme values. J. Roy. Statist. Soc., Ser. B 65 (2003), 545-556. | DOI | MR
[8] Fisher, R. A., Tippett, L. H. C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Math. Proc. Cambridge Philosophical Soc. 24 (1928), 180-190. | DOI
[9] Haan, L. de, Mercadier, C., Zhou, C.: Adapting extreme value statistics to financial time series: dealing with bias and serial dependence. Finance Stoch. 20 (2016), 321-354. | DOI | MR
[10] Hall, P., Welsh, A. H.: Adaptive estimates of parameters of regular variation. Ann. Statist. 13 (1985), 331-341. | DOI | MR
[11] Hill, B. M.: A simple general approach to inference about the tail of a distribution. Ann. Statist. 3 (1975), 1163-1174. | DOI | MR
[12] Jordanova, P., Stehlík, M., Fabián, Z., Střelec, L.: On estimation and testing for Pareto tails. Pliska Stud. Math. Bulgar. 22 (2013), 89-108. | MR
[13] Jordanova, P., Dušek, J., Stehlík, M.: Modeling methane emission by the infinite moving average process. Chemometrics and Intelligent Laboratory Systems 122 (2013), 40-49. | DOI
[14] Jordanova, P., Fabián, Z., Hermann, P., Střelec, L., Rivera, A., Girard, S., Torres, S., Stehlík, M.: Weak properties and robustness of t-Hill estimators. Extremes 19 (2016), 591-626. | DOI | MR
[15] Koutrouvelis, I. A.: Regression-type estimation of the parameters of stable law. J. Amer. Statist. Assoc. 75 (1980), 918-928. | DOI | MR
[16] Leadbetter, M. R., Lindgren, G., Rootzen, H.: Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, New York 1983. | DOI | MR
[17] Mami, T. F., Ouadjed, H.: Semi parametric estimation for autoregressive process with infinite variance. ProbStat Forum 9 (2016), 73-79.
[18] McCulloch, J. H.: Simple consistent estimators of stable distribution parameters. Commun. Statist. - Simulation and Computation 15 (1986), 1109-1136. | DOI | MR | Zbl
[19] Meerschaert, M. M., Scheffler, H. P: A simple robust estimation method for the thickness of heavy tails. J. Statist. Planning Inference 71 (1998), 19-34. | DOI | MR
[20] Neves, C., Alves, M. I. Fraga: Reiss and Thomas automatic selection of the number of extremes. Comput. Statist. Data Anal. 47 (2004), 689-704. | DOI | MR
[21] Nolan, J. P.: Maximum likelihood estimation and diagnostics for stable distributions. In: Lévy Processes (O. E. Barndorff-Nielsen, T. Mikosch, and S. Resnick, eds.), Brikhäuser, Boston 2001. | DOI | MR | Zbl
[22] Samorodnitsky, G., Taqqu, M.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman and Hall, New York 1994. | MR
[23] Smith, R. L., Weissman, I.: Estimating the extremal index. J. Roy. Statist. Soc., Ser. B 56 (1994), 515-528. | MR
[24] Süveges, M.: Likelihood estimation of the extremal index. Extremes 10 (2007), 41-55. | DOI | MR
[25] Weissman, I., Novak, S. Y.: On blocks and runs estimators of the extremal index. J. Statist. Planning Inference 66 (1998), 281-288. | DOI | MR
Cité par Sources :