Estimation for heavy tailed moving average process
Kybernetika, Tome 54 (2018) no. 2, pp. 351-362
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we propose two estimators for a heavy tailed MA(1) process. The first is a semi parametric estimator designed for MA(1) driven by positive-value stable variables innovations. We study its asymptotic normality and finite sample performance. We compare the behavior of this estimator in which we use the Hill estimator for the extreme index and the estimator in which we use the t-Hill in order to examine its robustness. The second estimator is for MA(1) driven by stable variables innovations using the relationship between the extremal index and the moving average parameter. We analyze their performance through a simulation study.
In this paper, we propose two estimators for a heavy tailed MA(1) process. The first is a semi parametric estimator designed for MA(1) driven by positive-value stable variables innovations. We study its asymptotic normality and finite sample performance. We compare the behavior of this estimator in which we use the Hill estimator for the extreme index and the estimator in which we use the t-Hill in order to examine its robustness. The second estimator is for MA(1) driven by stable variables innovations using the relationship between the extremal index and the moving average parameter. We analyze their performance through a simulation study.
DOI : 10.14736/kyb-2018-2-0351
Classification : 60G70, 62G32
Keywords: extreme value theory; mixing processes; tail index estimation
@article{10_14736_kyb_2018_2_0351,
     author = {Ouadjed, Hakim and Mami, Tawfiq Fawzi},
     title = {Estimation for heavy tailed moving average process},
     journal = {Kybernetika},
     pages = {351--362},
     year = {2018},
     volume = {54},
     number = {2},
     doi = {10.14736/kyb-2018-2-0351},
     mrnumber = {3807720},
     zbl = {06890425},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-2-0351/}
}
TY  - JOUR
AU  - Ouadjed, Hakim
AU  - Mami, Tawfiq Fawzi
TI  - Estimation for heavy tailed moving average process
JO  - Kybernetika
PY  - 2018
SP  - 351
EP  - 362
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-2-0351/
DO  - 10.14736/kyb-2018-2-0351
LA  - en
ID  - 10_14736_kyb_2018_2_0351
ER  - 
%0 Journal Article
%A Ouadjed, Hakim
%A Mami, Tawfiq Fawzi
%T Estimation for heavy tailed moving average process
%J Kybernetika
%D 2018
%P 351-362
%V 54
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-2-0351/
%R 10.14736/kyb-2018-2-0351
%G en
%F 10_14736_kyb_2018_2_0351
Ouadjed, Hakim; Mami, Tawfiq Fawzi. Estimation for heavy tailed moving average process. Kybernetika, Tome 54 (2018) no. 2, pp. 351-362. doi: 10.14736/kyb-2018-2-0351

[1] Brockwell, P. J., Davis, R. A.: Time Series: Theory and methods. Springer-Verlag, New York 1991. | DOI | MR

[2] Cheng, S., Peng, L.: Confidence intervals for the tail index. Bernoulli 7 (2001), 751-760. | DOI | MR

[3] Drees, H.: Weighted approximations of tail processes for $\beta$-mixing random variables. Ann. Appl. Probab. 10 (2000), 1274-1301. | DOI | MR

[4] Drees, H.: Extreme quantile estimation for dependent data, with applications to finance. Bernoulli 9 (2003), 617-657. | DOI | MR

[5] Fabián, Z., Stehlík, M.: On Robust and Distribution Sensitive Hill Like Method. Tech. Rep. IFAS Reasearch Paper Series 43 (2009).

[6] Feigin, P. D., Kratz, M. F., Resnick, S. I.: Parameter estimation for moving averages with positive innovations. Ann. Appl. Probab. 6 (1996), 1157-1190. | DOI | MR

[7] Ferro, C. A. T., Segers, J.: Inference for clusters of extreme values. J. Roy. Statist. Soc., Ser. B 65 (2003), 545-556. | DOI | MR

[8] Fisher, R. A., Tippett, L. H. C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Math. Proc. Cambridge Philosophical Soc. 24 (1928), 180-190. | DOI

[9] Haan, L. de, Mercadier, C., Zhou, C.: Adapting extreme value statistics to financial time series: dealing with bias and serial dependence. Finance Stoch. 20 (2016), 321-354. | DOI | MR

[10] Hall, P., Welsh, A. H.: Adaptive estimates of parameters of regular variation. Ann. Statist. 13 (1985), 331-341. | DOI | MR

[11] Hill, B. M.: A simple general approach to inference about the tail of a distribution. Ann. Statist. 3 (1975), 1163-1174. | DOI | MR

[12] Jordanova, P., Stehlík, M., Fabián, Z., Střelec, L.: On estimation and testing for Pareto tails. Pliska Stud. Math. Bulgar. 22 (2013), 89-108. | MR

[13] Jordanova, P., Dušek, J., Stehlík, M.: Modeling methane emission by the infinite moving average process. Chemometrics and Intelligent Laboratory Systems 122 (2013), 40-49. | DOI

[14] Jordanova, P., Fabián, Z., Hermann, P., Střelec, L., Rivera, A., Girard, S., Torres, S., Stehlík, M.: Weak properties and robustness of t-Hill estimators. Extremes 19 (2016), 591-626. | DOI | MR

[15] Koutrouvelis, I. A.: Regression-type estimation of the parameters of stable law. J. Amer. Statist. Assoc. 75 (1980), 918-928. | DOI | MR

[16] Leadbetter, M. R., Lindgren, G., Rootzen, H.: Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, New York 1983. | DOI | MR

[17] Mami, T. F., Ouadjed, H.: Semi parametric estimation for autoregressive process with infinite variance. ProbStat Forum 9 (2016), 73-79.

[18] McCulloch, J. H.: Simple consistent estimators of stable distribution parameters. Commun. Statist. - Simulation and Computation 15 (1986), 1109-1136. | DOI | MR | Zbl

[19] Meerschaert, M. M., Scheffler, H. P: A simple robust estimation method for the thickness of heavy tails. J. Statist. Planning Inference 71 (1998), 19-34. | DOI | MR

[20] Neves, C., Alves, M. I. Fraga: Reiss and Thomas automatic selection of the number of extremes. Comput. Statist. Data Anal. 47 (2004), 689-704. | DOI | MR

[21] Nolan, J. P.: Maximum likelihood estimation and diagnostics for stable distributions. In: Lévy Processes (O. E. Barndorff-Nielsen, T. Mikosch, and S. Resnick, eds.), Brikhäuser, Boston 2001. | DOI | MR | Zbl

[22] Samorodnitsky, G., Taqqu, M.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman and Hall, New York 1994. | MR

[23] Smith, R. L., Weissman, I.: Estimating the extremal index. J. Roy. Statist. Soc., Ser. B 56 (1994), 515-528. | MR

[24] Süveges, M.: Likelihood estimation of the extremal index. Extremes 10 (2007), 41-55. | DOI | MR

[25] Weissman, I., Novak, S. Y.: On blocks and runs estimators of the extremal index. J. Statist. Planning Inference 66 (1998), 281-288. | DOI | MR

Cité par Sources :