A numerical study of Newton interpolation with extremely high degrees
Kybernetika, Tome 54 (2018) no. 2, pp. 279-288
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In current textbooks the use of Chebyshev nodes with Newton interpolation is advocated as the most efficient numerical interpolation method in terms of approximation accuracy and computational effort. However, we show numerically that the approximation quality obtained by Newton interpolation with Fast Leja (FL) points is competitive to the use of Chebyshev nodes, even for extremely high degree interpolation. This is an experimental account of the analytic result that the limit distribution of FL points and Chebyshev nodes is the same when letting the number of points go to infinity. Since the FL construction is easy to perform and allows to add interpolation nodes on the fly in contrast to the use of Chebyshev nodes, our study suggests that Newton interpolation with FL points is currently the most efficient numerical technique for polynomial interpolation. Moreover, we give numerical evidence that any reasonable function can be approximated up to machine accuracy by Newton interpolation with FL points if desired, which shows the potential of this method.
In current textbooks the use of Chebyshev nodes with Newton interpolation is advocated as the most efficient numerical interpolation method in terms of approximation accuracy and computational effort. However, we show numerically that the approximation quality obtained by Newton interpolation with Fast Leja (FL) points is competitive to the use of Chebyshev nodes, even for extremely high degree interpolation. This is an experimental account of the analytic result that the limit distribution of FL points and Chebyshev nodes is the same when letting the number of points go to infinity. Since the FL construction is easy to perform and allows to add interpolation nodes on the fly in contrast to the use of Chebyshev nodes, our study suggests that Newton interpolation with FL points is currently the most efficient numerical technique for polynomial interpolation. Moreover, we give numerical evidence that any reasonable function can be approximated up to machine accuracy by Newton interpolation with FL points if desired, which shows the potential of this method.
DOI : 10.14736/kyb-2018-2-0279
Classification : 65-05, 65D05, 97N50
Keywords: polynomial interpolation; Newton interpolation; interpolation nodes; Chebyshev nodes; Leja ordering; fast Leja points
@article{10_14736_kyb_2018_2_0279,
     author = {Breu{\ss}, Michael and Kemm, Friedemann and Vogel, Oliver},
     title = {A numerical study of {Newton} interpolation with extremely high degrees},
     journal = {Kybernetika},
     pages = {279--288},
     year = {2018},
     volume = {54},
     number = {2},
     doi = {10.14736/kyb-2018-2-0279},
     mrnumber = {3807715},
     zbl = {06890420},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-2-0279/}
}
TY  - JOUR
AU  - Breuß, Michael
AU  - Kemm, Friedemann
AU  - Vogel, Oliver
TI  - A numerical study of Newton interpolation with extremely high degrees
JO  - Kybernetika
PY  - 2018
SP  - 279
EP  - 288
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-2-0279/
DO  - 10.14736/kyb-2018-2-0279
LA  - en
ID  - 10_14736_kyb_2018_2_0279
ER  - 
%0 Journal Article
%A Breuß, Michael
%A Kemm, Friedemann
%A Vogel, Oliver
%T A numerical study of Newton interpolation with extremely high degrees
%J Kybernetika
%D 2018
%P 279-288
%V 54
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-2-0279/
%R 10.14736/kyb-2018-2-0279
%G en
%F 10_14736_kyb_2018_2_0279
Breuß, Michael; Kemm, Friedemann; Vogel, Oliver. A numerical study of Newton interpolation with extremely high degrees. Kybernetika, Tome 54 (2018) no. 2, pp. 279-288. doi: 10.14736/kyb-2018-2-0279

[1] Atkinson, K. E.: An Introduction to Numerical Analysis. Second edition. John Wiley and Sons, Inc., New York 1989. | MR

[2] Baglama, J., Calvetti, D., Reichel, L.: Iterative methods for the computation of a few eigenvalues of a large symmetric matrix. BIT 36 (1996), 3, 400-421. | DOI | MR

[3] Baglama, J., Calvetti, D., Reichel, L.: Fast Leja points. ETNA, Electron. Trans. Numer. Anal. 7 (1998), 124-140. | MR

[4] Calvetti, D., Reichel, L.: Adaptive Richardson iteration based on Leja points. J. Comput. Appl. Math. 71 (1996), 2, 267-286. | DOI | MR

[5] Calvetti, D., Reichel, L.: On the evaluation of polynomial coefficients. Numer. Algorithms 33 (2003), 1-4, 153-161. | DOI | MR

[6] Boor, C. de: A Practical Guide to Splines. Revised edition. Springer-Verlag, Inc., New York 2001. | MR

[7] Eisinberg, A., Fedele, G.: On the inversion of the Vandermonde matrix. Appl. Math. Comput. 174 (2006), 2, 1384-1397. | DOI | MR

[8] Gautschi, W.: Numerical Analysis. An Introduction. Birkhäuser, Boston 1997. | MR

[9] Higham, N. J.: Stability analysis of algorithms for solving confluent Vandermonde-like systems. SIAM J. Matrix Anal. Appl. 11 (1990), 1, 23-41. | DOI | MR

[10] Horner, W. G.: A new method of solving numerical equations of all orders, by continuous approximation. In: Philosophical Transactions of the Royal Society of London, 1819, pp. 308-335. | DOI

[11] Natanson, I. P.: Konstruktive Funktionentheorie. Mathematische Lehrbücher und Monographien. I. Abteilung, Bd. VII., Akademie-Verlag. XIV, 515 S., 2. Abb. (1955), Berlin 1955. | MR

[12] Reichel, L.: Newton interpolation at Leja points. BIT 30 (1990), 2, 332-346. | DOI | MR

[13] Runge, C.: Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten. Schlömilch Z. 46 (1901), 224-243.

[14] Tal-Ezer, H.: High degree polynomial interpolation in Newton form. SIAM J. Sci. Stat. Comput. 12 (1991), 3, 648-667. | DOI | MR

[15] Trefethen, L. N.: Approximation Theory and Approximation Practice. PA: Society for Industrial and Applied Mathematics (SIAM), Philadelphia 2013. | MR | Zbl

Cité par Sources :