Keywords: polynomial interpolation; Newton interpolation; interpolation nodes; Chebyshev nodes; Leja ordering; fast Leja points
@article{10_14736_kyb_2018_2_0279,
author = {Breu{\ss}, Michael and Kemm, Friedemann and Vogel, Oliver},
title = {A numerical study of {Newton} interpolation with extremely high degrees},
journal = {Kybernetika},
pages = {279--288},
year = {2018},
volume = {54},
number = {2},
doi = {10.14736/kyb-2018-2-0279},
mrnumber = {3807715},
zbl = {06890420},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-2-0279/}
}
TY - JOUR AU - Breuß, Michael AU - Kemm, Friedemann AU - Vogel, Oliver TI - A numerical study of Newton interpolation with extremely high degrees JO - Kybernetika PY - 2018 SP - 279 EP - 288 VL - 54 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-2-0279/ DO - 10.14736/kyb-2018-2-0279 LA - en ID - 10_14736_kyb_2018_2_0279 ER -
%0 Journal Article %A Breuß, Michael %A Kemm, Friedemann %A Vogel, Oliver %T A numerical study of Newton interpolation with extremely high degrees %J Kybernetika %D 2018 %P 279-288 %V 54 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-2-0279/ %R 10.14736/kyb-2018-2-0279 %G en %F 10_14736_kyb_2018_2_0279
Breuß, Michael; Kemm, Friedemann; Vogel, Oliver. A numerical study of Newton interpolation with extremely high degrees. Kybernetika, Tome 54 (2018) no. 2, pp. 279-288. doi: 10.14736/kyb-2018-2-0279
[1] Atkinson, K. E.: An Introduction to Numerical Analysis. Second edition. John Wiley and Sons, Inc., New York 1989. | MR
[2] Baglama, J., Calvetti, D., Reichel, L.: Iterative methods for the computation of a few eigenvalues of a large symmetric matrix. BIT 36 (1996), 3, 400-421. | DOI | MR
[3] Baglama, J., Calvetti, D., Reichel, L.: Fast Leja points. ETNA, Electron. Trans. Numer. Anal. 7 (1998), 124-140. | MR
[4] Calvetti, D., Reichel, L.: Adaptive Richardson iteration based on Leja points. J. Comput. Appl. Math. 71 (1996), 2, 267-286. | DOI | MR
[5] Calvetti, D., Reichel, L.: On the evaluation of polynomial coefficients. Numer. Algorithms 33 (2003), 1-4, 153-161. | DOI | MR
[6] Boor, C. de: A Practical Guide to Splines. Revised edition. Springer-Verlag, Inc., New York 2001. | MR
[7] Eisinberg, A., Fedele, G.: On the inversion of the Vandermonde matrix. Appl. Math. Comput. 174 (2006), 2, 1384-1397. | DOI | MR
[8] Gautschi, W.: Numerical Analysis. An Introduction. Birkhäuser, Boston 1997. | MR
[9] Higham, N. J.: Stability analysis of algorithms for solving confluent Vandermonde-like systems. SIAM J. Matrix Anal. Appl. 11 (1990), 1, 23-41. | DOI | MR
[10] Horner, W. G.: A new method of solving numerical equations of all orders, by continuous approximation. In: Philosophical Transactions of the Royal Society of London, 1819, pp. 308-335. | DOI
[11] Natanson, I. P.: Konstruktive Funktionentheorie. Mathematische Lehrbücher und Monographien. I. Abteilung, Bd. VII., Akademie-Verlag. XIV, 515 S., 2. Abb. (1955), Berlin 1955. | MR
[12] Reichel, L.: Newton interpolation at Leja points. BIT 30 (1990), 2, 332-346. | DOI | MR
[13] Runge, C.: Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten. Schlömilch Z. 46 (1901), 224-243.
[14] Tal-Ezer, H.: High degree polynomial interpolation in Newton form. SIAM J. Sci. Stat. Comput. 12 (1991), 3, 648-667. | DOI | MR
[15] Trefethen, L. N.: Approximation Theory and Approximation Practice. PA: Society for Industrial and Applied Mathematics (SIAM), Philadelphia 2013. | MR | Zbl
Cité par Sources :