Keywords: max-plus algebra; strongly connected road network; scheduling
@article{10_14736_kyb_2018_2_0243,
author = {Subiono and Kistosil, Fahim and Adzkiya, Dieky},
title = {Generalized public transportation scheduling using max-plus algebra},
journal = {Kybernetika},
pages = {243--267},
year = {2018},
volume = {54},
number = {2},
doi = {10.14736/kyb-2018-2-0243},
mrnumber = {3807713},
zbl = {06890418},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-2-0243/}
}
TY - JOUR AU - Subiono AU - Kistosil, Fahim AU - Adzkiya, Dieky TI - Generalized public transportation scheduling using max-plus algebra JO - Kybernetika PY - 2018 SP - 243 EP - 267 VL - 54 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-2-0243/ DO - 10.14736/kyb-2018-2-0243 LA - en ID - 10_14736_kyb_2018_2_0243 ER -
%0 Journal Article %A Subiono %A Kistosil, Fahim %A Adzkiya, Dieky %T Generalized public transportation scheduling using max-plus algebra %J Kybernetika %D 2018 %P 243-267 %V 54 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-2-0243/ %R 10.14736/kyb-2018-2-0243 %G en %F 10_14736_kyb_2018_2_0243
Subiono; Kistosil, Fahim; Adzkiya, Dieky. Generalized public transportation scheduling using max-plus algebra. Kybernetika, Tome 54 (2018) no. 2, pp. 243-267. doi: 10.14736/kyb-2018-2-0243
[1] Arnold, P., Peeters, D., Thomas, I.: Modelling a rail/road intermodal transportation system. Transport. Res. Part E: Logist. Transport. Rev. 40 (2004), 255-270. | DOI | MR
[2] Baccelli, F., Cohen, G., Olsder, G. J., Quadrat, J.-P.: Synchronization and Linearity, an Algebra for Discrete Event Systems. John Wiley and Sons, 1992. | MR
[3] Braker, J. G.: Algorithms and Applications in Timed Discrete Event Systems. PhD Thesis, Delft University of Technology, 1993. | MR
[4] Castelli, L., Pesenti, R., Ukovich, W.: Scheduling multimodal transportation systems. Europ. J. Oper. Res. 155 (2004), 603-615. | DOI | MR
[5] Chen, B., Cheng, H. H.: A review of the applications of agent technology in traffic and transportation systems. IEEE Trans. Intell. Transport. Systems 11 (2010), 485-497. | DOI
[6] Cochet-Terrasson, J., Cohen, G., Gaubert, S., McGettrick, M., Quadrat, J.-P.: Numerical computation of spectral elements in max-plus algebra. In: Proc. IFAC Conference on System Structure and Control, 1998, pp. 699-706. | DOI
[7] Crainic, T. G., Rousseau, J.-M.: Multicommodity, multimode freight transportation: A general modeling and algorithmic framework for the service network design problem. Transport. Res. Part B: Methodological 20 (1986), 225-242. | DOI
[8] Febbraro, A. Di, Sacone, S.: Hybrid modelling of transportation systems by means of Petri nets. In: Proc. IEEE International Conference on Systems, Man, and Cybernetics, 1998, pp. 131-135. | DOI
[9] Febbraro, A. Di, Sacco, N.: On modelling urban transportation networks via hybrid Petri nets. Control Engrg. Practice 12 (2004), 1225-1239. | DOI
[10] Etschmaier, M. M.: Fuzzy controls for maintenance scheduling in transportation systems. Automatica 16 (1980), 255-264. | DOI
[11] Fahim, K., Hanafi, L., Ayu, F.: Monorail and tram scheduling which integrated Surabaya using max-plus algebra. In: International Seminar on Innovation in Mathematics and Mathematics Education, 2014.
[12] Fahim, K., Subiono, Woude, J. W. van der: On a generalization of power algorithms over max-plus algebra. Discrete Event Dynamic Systems 27 (2017), 181-203. | DOI | MR
[13] Goverde, R. M. P.: Punctuality of Railway Operations and Timetable Stability Analysis. PhD Thesis, Delft University of Technology, 2005.
[14] Gursoy, B. B., Mason, O.: Spectral properties of matrix polynomials in the max algebra. Linear Algebra Appl. 435 (2011), 1626-1636. | DOI | MR
[15] Heidergott, B., Olsder, G. J., Woude, J.W. van der: Max Plus at Work-Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications. Princeton University Press, 2006. | DOI | MR
[16] Herrero-Perez, D., Martinez-Barbera, H.: Modeling distributed transportation systems composed of flexible automated guided vehicles in flexible manufacturing systems. IEEE Trans. Industrial Informatics 6 (2010), 166-180. | DOI
[17] James, S. J., James, C., Evans, J. A.: Modelling of food transportation systems - a review. Int. J. Refrigeration 29 (2006), 947-957. | DOI
[18] Levin, A.: Scheduling and fleet routing models for transportation systems. Transport. Sci. 5 (1971), 232-255. | DOI | MR
[19] Koelemeijer, G. Soto y: On the Behaviour of Classes of Min-max-plus Systems. PhD Thesis, Delft University of Technology, 2003.
[20] Stein, D. M.: Scheduling dial-a-ride transportation systems. Transport. Sci. 12 (1978), 232-249. | DOI
[21] Subiono, Woude, J.W. van der: Power algorithms for (max,+)- and bipartite (min,max,+)-systems. Discrete Event Dynamic Systems 10 (2000), 369-389. | DOI | MR
[22] Subiono: On Classes of Min-max-plus Systems and their Applications. PhD Thesis, Delft University of Technology, 2000. | MR
[23] Subiono, Fahim, K.: On computing supply chain scheduling using max-plus algebra. Appl. Math. Sci. 10 (2016), 477-486. | DOI
Cité par Sources :