Keywords: adaptive observers; nonlinear systems; bioprocess
@article{10_14736_kyb_2018_1_0155,
author = {\v{C}elikovsk\'y, Sergej and Torres-Mu\~noz, Jorge Antonio and Dominguez-Bocanegra, Alma Rosa},
title = {Adaptive high gain observer extension and its application to bioprocess monitoring},
journal = {Kybernetika},
pages = {155--174},
year = {2018},
volume = {54},
number = {1},
doi = {10.14736/kyb-2018-1-0155},
mrnumber = {3780961},
zbl = {06861619},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-1-0155/}
}
TY - JOUR AU - Čelikovský, Sergej AU - Torres-Muñoz, Jorge Antonio AU - Dominguez-Bocanegra, Alma Rosa TI - Adaptive high gain observer extension and its application to bioprocess monitoring JO - Kybernetika PY - 2018 SP - 155 EP - 174 VL - 54 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-1-0155/ DO - 10.14736/kyb-2018-1-0155 LA - en ID - 10_14736_kyb_2018_1_0155 ER -
%0 Journal Article %A Čelikovský, Sergej %A Torres-Muñoz, Jorge Antonio %A Dominguez-Bocanegra, Alma Rosa %T Adaptive high gain observer extension and its application to bioprocess monitoring %J Kybernetika %D 2018 %P 155-174 %V 54 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-1-0155/ %R 10.14736/kyb-2018-1-0155 %G en %F 10_14736_kyb_2018_1_0155
Čelikovský, Sergej; Torres-Muñoz, Jorge Antonio; Dominguez-Bocanegra, Alma Rosa. Adaptive high gain observer extension and its application to bioprocess monitoring. Kybernetika, Tome 54 (2018) no. 1, pp. 155-174. doi: 10.14736/kyb-2018-1-0155
[1] Abbaszadeh, M., Marquez, H. J.: A generalized framework for robust nonlinear Hinfty filtering of Lipschitz descriptor systems with parametric and nonlinear uncertainties. Automatica 48 (2012), 5, 894-900. | DOI
[2] Agrawal, P., Lim, H.: Analyses of various control schemes for continuous bioreactors. Advances in Biochemical Engineering/ Biotechnology 30 (1984), 61-90. | DOI
[3] Bastin, G., Gevers, M.: Stable adaptive observers for nonlinear time-varying systems. IEEE Trans. Automat. Control 33 (1988), 7, 650-658. | DOI
[4] Bejarano, F., Fridman, L.: High order sliding mode observer for linear systems with unbounded unknown inputs. Int. J. Control 83 (2010), 1920-1929. | DOI | MR
[5] Besancon, G., Leon-Morales, J. de, Huerta-Guevara, O.: On adaptive observers for state affine systems. Int. J. Control 79 (2006), 6, 581-591. | DOI | MR
[6] al., A. R. Bocanegra-Domínguez et: Estudio teórico práctico de la remoción de contaminantes presentes en el río de Los Remedios, Estado de México. Tecnología y Ciencias del Agua 24.2 (2009), 81-91. (In Spanish)
[7] Bornard, G., Celle-Couenne, F., Gilles, G.: Observability and Observers. In: Nonlinear Systems - T.1, ‘Modeling and Estimation’. Chapman and Hall, London 1995, pp. 173-216. | DOI | MR
[8] Canizares, R. O., Domínguez, A. R.: Growth of Spirulina maxima on swine waste. Bioresource Technol. 45 (1993), 1, 73-75. | DOI
[9] Diop, S., Fliess, M.: Nonlinear observability, identifiability, and persistent trajectories. In: Proc. 30th IEEE Conference on Decision and Control 1 (1991), pp. 714-719. | DOI
[10] Efimov, D., Fridman, L.: Global sliding-mode observer with adjusted gains for locally Lipschitz systems. Automatica 47 (2011), 3, 565-570. | DOI
[11] Farza, M., Bouraou, I., Menard, T., Abdennou, R., M'Saad, M.: Adaptive observers for a class of uniformly observable systems with nonlinear parametrization and sampled outputs. Automatica 50 (2014), 2951-2960. | DOI | MR
[12] Farza, M., M'saad, M., Maatou, T., Kamoun, M.: Adaptive observers for nonlinearly parameterized class of nonlinear systems. Automatica 45 (2009), 2292-2299. | DOI | MR
[13] Fridman, L., Shtessel, Y., Edwards, C., Yan, X.: Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems. Int. J. Robust Nonlinear Control 18 (2008), 399-412. | DOI | MR
[14] Gauthier, J. P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems applications to bioreactors. IEEE Trans. Automat. Control 37 (1991), 875-880. | DOI | Zbl
[15] Gerd, L., Narendra, K.: An adaptive observer and identifier for a linear system. IEEE Trans. Automat. Control 18 (1973), 5, 496-499. | DOI
[16] Guoping, L., Ho, D: Full-order and reduced-order observers for Lipschitz descriptor systems: the unified LMI approach. IEEE Trans. Circuits Systems II: Express Briefs 53 (2006), 7, 563-567. | DOI
[17] Hammouri, H., Nadri, M.: An observer design for a class of implicit systems. Systems Control Lett. 62 (2013), 3, 256-261. | DOI | MR
[18] Hermann, R., Krener, A.: Nonlinear controllability and observability. IEEE Trans. Automat. Control 22 (1977), 5, 728-740. | DOI
[19] Hamid-Reza, K., Zapateiro, M., Luo, N.: A linear matrix inequality approach to robust fault detection filter design of linear systems with mixed time-varying delays and nonlinear perturbations. J. Franklin Inst. 347 (2010), 6, 957-973. | DOI
[20] Karimi, H. R., Zapateiro, M., N., Luo: A linear matrix inequality approach to robust fault detection filter design of linear systems with mixed time-varying delays and nonlinear perturbations. J. Franklin Inst. 347 (2010), 6, 957-973. | DOI | MR
[21] Khalil, H.: Nonlinear Systems. Third edition. Prentice Hall, Englewood Cliffs, NJ 2002.
[22] Khosrowjerdi, M. J.: Mixed H2/Hinfty approach to fault-tolerant controller design for Lipschitz non-linear systems. IET Control Theory A. 5 (2011), 2, 299-307. | DOI
[23] Kreisselmeier, G.: Adaptive observers with exponential rate of convergence. IEEE Trans. Automat. Control 22 (1977), 1, 2-8. | DOI | MR
[24] Lafon, F., Busvelle, E., Gauthier, J. P.: An adaptive high-gain observer for wastewater treatment systems. Journal Process Control 21 (2011), 893-900. | DOI
[25] Liang, X., Jiangfeng, Z., Xiaohua, X.: Adaptive synchronization for generalized Lorenz systems. IEEE Trans. Automat. Control 53 (2008), 7, 1740-1746. | DOI | MR
[26] al., F. Mairet et: Modelling neutral lipid production by the microalga Isochrysis aff. galbana under nitrogen limitation. Bioresource Technol. 102.1 (2011), 142-149. | DOI
[27] Marino, R., Tomei, P.: Nonlinear Control Design. Geometric, Adaptive and Robust Approach. Prentice Hall, Englewood Cliffs, NJ 1995.
[28] Marino, R., Tomei, P.: Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems. IEEE Trans. Automat. Control 40 (1995), 7, 1300-1304. | DOI | MR
[29] Raghavan, S., Hedrick, J.: Observer design for a class of nonlinear systems. Int. J. Control 59 (1994), 2, 515-528. | DOI | MR | Zbl
[30] Rajamani, R.: Observers for Lipschitz nonlinear systems. IEEE Trans. Automat. Control 43 (1998), 3, 397-401. | DOI | Zbl
[31] Rodríguez-Mata, A., Torres-Muñoz, J., Domínguez, A. R., Hernandez-Villagran, D., Čelikovský, S.: Nonlinear high-gain observers with integral action: Application to bioreactors. In: Proc. 8th International Conference on Electrical Engineering, Computing Science and Automatic Control, Cancun 2011, pp. 444-449. | DOI
[32] Sanchez-Torres, J., Loukianov, G., Moreno, J., Drakunov, S. V.: An equivalent control based sliding mode observer using high order uniform robust sliding operators. In: Proc. American Control Conference, Montreal 2012, pp. 6160-6165.
[33] Travieso, L., Sánchez, E., Bora, R.: Evaluation of laboratory and full-scale microalgae pond for tertiary treament of piggery wastes. Enviromental Technol. 25 (2004), 565-576. | DOI
[34] Wu, H.: A class of adaptive robust state observers with simpler structure for uncertain non linear systems with time varying delays. IET Control Theory Appl. 7 (2013), 218-222. | DOI
[35] Yong-Hong, L., Zhou, Y.: Non-fragile observer-based robust control for a class of fractional-order nonlinear systems. Systems Control Lett. 62 (2013), 12, 1143-1150. | DOI
[36] Zhang, Q.: Adaptive observer for multiple-input-multiple-output (mimo) linear time-varying systems. IEEE Trans. Automat. Control 47 (2002), 3, 525-529. | DOI
[37] Zemouche, A., Boutayeb, M., Maatoug, T., Kamoun, M.: On LMI conditions to design observers for Lipschitz nonlinear systems. Automatica 49 (2013), 585-591. | DOI | MR
Cité par Sources :