Keywords: crowd dynamics; mobile robot; autonomous navigation
@article{10_14736_kyb_2018_1_0135,
author = {Rodriguez-Angeles, Alejandro and Vazquez Chavez, Luis-Fernando},
title = {Bio-inspired decentralized autonomous robot mobile navigation control for multi agent systems},
journal = {Kybernetika},
pages = {135--154},
year = {2018},
volume = {54},
number = {1},
doi = {10.14736/kyb-2018-1-0135},
mrnumber = {3780960},
zbl = {06861618},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-1-0135/}
}
TY - JOUR AU - Rodriguez-Angeles, Alejandro AU - Vazquez Chavez, Luis-Fernando TI - Bio-inspired decentralized autonomous robot mobile navigation control for multi agent systems JO - Kybernetika PY - 2018 SP - 135 EP - 154 VL - 54 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-1-0135/ DO - 10.14736/kyb-2018-1-0135 LA - en ID - 10_14736_kyb_2018_1_0135 ER -
%0 Journal Article %A Rodriguez-Angeles, Alejandro %A Vazquez Chavez, Luis-Fernando %T Bio-inspired decentralized autonomous robot mobile navigation control for multi agent systems %J Kybernetika %D 2018 %P 135-154 %V 54 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-1-0135/ %R 10.14736/kyb-2018-1-0135 %G en %F 10_14736_kyb_2018_1_0135
Rodriguez-Angeles, Alejandro; Vazquez Chavez, Luis-Fernando. Bio-inspired decentralized autonomous robot mobile navigation control for multi agent systems. Kybernetika, Tome 54 (2018) no. 1, pp. 135-154. doi: 10.14736/kyb-2018-1-0135
[1] Castillo, O., Neyoy, H., Soria, J., Melin, P., Valdez, F.: A new approach for dynamic fuzzy logic parameter tuning in AntColony Optimization and its application in fuzzy control of a mobile robot. Applied Soft Computing 28 (2015), 150-159. | DOI
[2] Cheng, H., Chen, H., Liu, Y.: Topological indoor localization and navigation for autonomous mobile robots. IEEE Trans. Autonom. Sci. Engrg. 12 (2015), 2, 729-738. | DOI
[3] Chen, X., Yang, Y., Cai, S., Chen, J.: Modeling and analysis of multi-agent coordination using nearest neighbor rules informatics in control. | DOI
[4] Dai, Y., Lee, S. G.: Formation control of mobile robots with obstacle avoidance based on GOACM using onboard sensors. Int. J. Control, Automat. Systems 12 (2014), 5, 1077-1089. | DOI
[5] Ganeshmurthy, M. S., Suresh, G. R.: Path planning algorithm for autonomous mobile robot in dynamic environment. In: 3rd International Conference on Signal Processing, Communication and Networking (ICSCN), 2015. | DOI
[6] Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transport. Sci. 39 (2005), 1, 1-24. | DOI
[7] Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407 (2000), 487-490. | DOI
[8] Helbing, D., Molnár, P., Farkas, I. J., Bolay, K.: Self-organizing pedestrian movement Environment and planning B: planning and design. SAGE Publications Sage UK: London, England 28 (2001), 361-383. | DOI
[9] Khalil, H. K.: Nonlinear Systems. Prentice Hall, Upper Saddle River 1996. | Zbl
[10] Kostic, D., Adinandra, S., Caarls, J., Wouw, N. van de, Nijmeijer, H.: Collision-free tracking control of unicycle mobile robots. In: Proc. 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference (CDC/CCC), 2009, pp. 5667-5672. | DOI
[11] Meyer, H. G., Bertrand, O. J. N., Paskarbeit, J.: A bio-inspired model for visual collision avoidance on a hexapod walking robot. In: Biomimetic and Biohybrid Systems: 5th International Conference,Living Machines (F. Nathan, F. Lepora, A- Mura, M. Mangan, P. F. M J. Verschure, M. Desmulliez, and T. J. Prescott, eds.), Springer Verlag 2016, pp. 167-178. | DOI
[12] Omrane, H., Masmoudi, M. S., Masmoudi, M.: Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation. Computational Intelligence and Neuroscience, 2016. | DOI
[13] Orozco-Rosas, U., Montiel, O., Sepulveda, R.: Pseudo-bacterial potential field based path planner for autonomous mobile robot navigation. Int. J. Advanced Robotic Systems 12 (2015), 7, 81. | DOI
[14] Tomizawa, T., Shibata, Y.: Oncoming human avoidance for autonomous mobile robots based on gait characteristics. J. Robotics Mecatronics 28 (2016), 4, 500-507. | DOI
[15] Ueno, K., Kinoshita, T., Kobayashi, K., Watanabe, K.: Development of a robust path-planning algorithm using virtual obstacles for an autonomous mobile robot. J. Robotics Mechatronics 27 (2015), 3, 286-292. | DOI
[16] Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Physical Rev. Lett. 75 (1995), 6, 1226-1229. | DOI
[17] Xuesong, C., Yimin, Y., Shuting, C., Jianping, C.: Modeling and analysis of multi-agent coordination using nearest neighbor rules. In: Int. Asia Conference on Informatics in Control, Automation and Robotics 2009. | DOI
[18] (EDS.), R. W. Brockett: Asymptotic stability and feedback stabilization. In: Differential Geometric Control Theory 27 (1983), Birkhauser, Boston 1983. | MR
[19] Samson, C., Ait-Abderrahim, K.: Feedback control of a nonholonomic wheeled cart in cartesian space. In: Proc. IEEE International Conference on Robotics and Automation 1991. | DOI
[20] Samson, C., Ait-Abderrahim, K.: Mobile Robot Control. Part 1: Feedback Control of Nonholonomic Wheeled Cart in Cartesian Space. INRIA, 1990.
[21] Wit, C. C. de, Siciliano, B., (eds.), G. Bastin: Theory of Robot Control. Springer Science and Business Media 2012. | DOI
Cité par Sources :