Keywords: dynamic model of insulin-glucose; identifiability; parameter estimation; evolutionary algorithms; differential evolution; ant colony optimization; particle swarm optimization
@article{10_14736_kyb_2018_1_0110,
author = {Ruiz Vel\'azquez, Eduardo and S\'anchez, Oscar D. and Quiroz, Griselda and Pulido, Guillermo O.},
title = {Parametric {Identification} of {Sorensen} model for glucose-insulin-carbohydrates dynamics using evolutive algorithms},
journal = {Kybernetika},
pages = {110--134},
year = {2018},
volume = {54},
number = {1},
doi = {10.14736/kyb-2018-1-0110},
mrnumber = {3780959},
zbl = {06861617},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-1-0110/}
}
TY - JOUR AU - Ruiz Velázquez, Eduardo AU - Sánchez, Oscar D. AU - Quiroz, Griselda AU - Pulido, Guillermo O. TI - Parametric Identification of Sorensen model for glucose-insulin-carbohydrates dynamics using evolutive algorithms JO - Kybernetika PY - 2018 SP - 110 EP - 134 VL - 54 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-1-0110/ DO - 10.14736/kyb-2018-1-0110 LA - en ID - 10_14736_kyb_2018_1_0110 ER -
%0 Journal Article %A Ruiz Velázquez, Eduardo %A Sánchez, Oscar D. %A Quiroz, Griselda %A Pulido, Guillermo O. %T Parametric Identification of Sorensen model for glucose-insulin-carbohydrates dynamics using evolutive algorithms %J Kybernetika %D 2018 %P 110-134 %V 54 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-1-0110/ %R 10.14736/kyb-2018-1-0110 %G en %F 10_14736_kyb_2018_1_0110
Ruiz Velázquez, Eduardo; Sánchez, Oscar D.; Quiroz, Griselda; Pulido, Guillermo O. Parametric Identification of Sorensen model for glucose-insulin-carbohydrates dynamics using evolutive algorithms. Kybernetika, Tome 54 (2018) no. 1, pp. 110-134. doi: 10.14736/kyb-2018-1-0110
[1] Alaykiran, K., Engin, O.: Karinca Kolonileri Metasezgiseli ve Gezgin Satici Problemleri Üzerinde Bir Uygulamasi. Gazi Üniv. Müh. Mim. Fak. Der. 20 (2005), 69-76.
[2] Alaykoran, K., Engin, O.: The American Heritage. Dictionary of the American Language. Gazi Üniv. Müh. Mim. Fak. Der. 20 (2005), 69-76.
[3] Anguelova, M.: Nonlinear Observability and Identifiability: General Theory and a Case Study of a Kinetic Model for S. cerevisiae. Department of Mathematics. Chalmers University of technology and Göteborg University SE-412 96, Göteborg 2004.
[4] Balsa-Canto, E.: An iterative identification procedure for dynamic modeling of biochemical networks. BMC Systems Biology 4 (2010), 1, 4-11. | DOI
[5] Berger, M., Rodbard, D.: Computer simulation of plasma insulin and glucose dynamics after subcutaneous insulin injection. Diabetes Care 12 (1989), 10, 725-736. | DOI
[6] Bergman, R. N., Ider, Y. Z., Bowden, C. R., Cobelli, C.: Quantitative estimation of insulin sensitivity. Amer. J. Physiology 236 (1979), 6, E667-E677.
[7] Chee, F., Fernando, T.: Closed-Loop Control of Blood Glucose. Springer 368, Berlin, Heidlberg 2007. | DOI | MR
[8] Chis, O. T., Banga, J. R., Balsa-Canto, E.: Structural identifiability of systems biology models: A critical comparison of methods. PLos One 6 (2011), 11, e27755. | DOI
[9] Chis, O., Banga, J. R., Balsa-Canto, E.: GenSSI: a software toolbox for structural identifiability analysis of biological models. Bioinformatics 27 (2011), 18, 2610-2611. | DOI
[10] Cobelli, C., Man, C. Dalla, Sparacino, G., Magni, L., Nicolao, G. de, Kovatchev, B.: Models, signals and control (Methodological review). IEEE Rev. Biomed. Engrg. 2 (2009), 54-96. | DOI
[11] Colmegna, P., Peña, R. S. Sanchez: Analysis of three T1DM simulation models for evaluating robust closed-loop controllers. Computer Methods and Programs in Biomedicine 113 (2014), 371-382. | DOI
[12] Colorni, A., Dorigo, M., Maniezzo, V.: Distributed Optimization by Ant Colonies. In: The First European Conference on Artificial Life. Paris 1992.
[13] Das, T. K., Venayagamoorthy, G. K., Aliyu, U. O.: Bio-inspired algorithms for the design of multiple optimal power system stabilizers: SPPSO and BFA. IEEE Trans. Ind. Appl. 44 (2008), 5, 1445-1457. | DOI
[14] Davson, H., Spaziani, E.: The blood–brain barrier and the extracellular space of the brain. J. Physiology 149 (1959), 1, 135-143. | DOI
[15] Valle, Y. del, Venayagamoorthy, G. K., Mohagheghi, S., Hernandez, J.-C., Harley, R. G.: Particle swarm optimization: Basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12 (2008), 2, 171-195. | DOI
[16] Dikondwar, S.-R.: Design and development of insulin delivery system prototype. In: Communication Software and Networks (ICCSN), IEEE 3rd International Conference 2011, pp. 575-579. | DOI
[17] Eberhart, R. C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proc. 6th Int. Symp. Micromachine Hum. Sci. 1995, pp. 39-43.
[18] Ergüzel, T., Akbay, E.: ACO (Ant Colony Optimization) Algoritmasi ile Yrnge Takibi. Izmit, Kocaeli 2007.
[19] Femat, R., Ruiz-Velázquez, E., Quiroz, G.: Weighting restriction for intravenous insulin delivery on t1dm patient via $H_{\infty}$ control. IEEE Trans. Automat. Sci. Engrg. 6 (2009), 2, 239-247. | DOI
[20] Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms behaviour: A case study on the CEC'2005 Special Session on Real Parameter Optimization. Springer Science Business Media, J Heuristics 15 (2008), 617-644. | DOI
[21] Gómez, E. J., Thomas, M. E. Hernando Pérez y: The INCA system: A further step towards a telemedical artificial pancreas. IEEE Trans. Inform. Technol. Biomedicine 12 (2008), 4, 470-479. | DOI
[22] Guyton, J. R.: A model of glucose-insulin homeostasis in man that incorporates the heterogeneous fast pool theory of pancreatic insulin realise. Diabetes (1978), 1027-1042. | DOI
[23] Haidar, A., Wilinska, E. M., Graveston, J. A., Hovorka, R.: Stochastic virtual population of subjects with type 1 diabetes for the assessment of closed-loop glucose controllers. IEEE Trans. Biomed. Engrg. 60 (2013), 12, 3524-3533. | DOI
[24] Harvey, R. A., Wang, Y., Grosman, B., Percival, M. W., Bevier, W., Finan, D. A., Zisser, H., Sebong, D. E., Jovanovic, L., III, F. J. Doyle, Dassau, E.: Quest for the artificial pancreas: combining technology with treatment. In: IEEE Engrg. Medicine Biol. Magazine 29 (2010), 2, 53-62. | DOI
[25] Hovorka, R., Shojaee-Moradie, F., Carroll, P. V., Chassin, L. J., Gowrie, I. J., Jackson, N. C., Tudor, R. S., Umpleby, A. M., Jones, R. H.: Partitioning glucose distribution/transport, disposal, and endogenous production during ivgtt. Amer. J. Physiol. Endocrinol. Metabol. 282 (2002), 5, E992-E1007. | DOI
[26] Kennedy, J., Eberhart, R. C.: Particle swarm optimization. In: Proc. IEEE Int. Conf. Neural Netw. 1995, pp. 1942-1948. | DOI
[27] Lehmann, E. D., Deutsch, T.: Physiological model of glucose-insulin interaction in type I diabetes mellitus. J. Biomedical Engrg. 14 (1992), 235-242. | DOI
[28] Lin, H. S., Liauh, W. H., Ho, S. J.: OPSO: Orthogonal particle swarm optimization and its application to task assignment problems. IEEE Trans. Syst. Man Cybern. B 38 (2008), 2, 288-289. | DOI
[29] Man, C., Rizza, R., Cobelli: Meal simulation model of the glucose-insulin system. IEEE Trans. Biomed. Engrg. 54 (2007), 10, 1740-1749. | DOI
[30] Pedersen, M. G., Toffolo, G. M., Cobelli: Cellular modeling: insight into oral minimal models of insulin secretion. Amer. J. Physiol. Endocrinol. Metabol. 298 (2010), E597-E601. | DOI
[31] Peng, B., Liu, B., Zhang, F., Wang, L.: Differential evolution algorithm-based parameter estimation for chaotic systems. Chaos, Solitons Fractals 39 (2009), 2110-2118. | DOI
[32] Quiroz, G., Femat, R.: On hyperglicemic glucose basal levels in Type 1 Diabetes Mellitus from dynamic analysis. Math. Biosciences 210 (2007), 554-575. | DOI
[33] Respondek, W.: Geometry of static and dynamic feedback. In: Lectures given at the Summer School on Mathematics Control Theory, Trieste 2001 and Bedlewo-Warsaw 2002, Laboratoire de Mathématiques INSA, Rouen. | MR
[34] Sorensen, J. T.: A Physiology Model of Glucose Metabolism in Man And Its Use to Design and Asses Improved Insulin Therapies for Diabetes. Ph.D. Dissertation, Massachusetts Institute of Technology 1985.
[35] Tiran, J., Galle, K. R., Porte, Jr.: A simulation model of extracellular glucose distribution in the human body. Ann. Biomedical Engrg. 3 (1975), 34-46. | DOI
[36] Tuch, B., Dunlop, M., Research, J. Proietto. Diabetes: A guide for Postgraduates. Taylor and Francis e-Library, 2004.
[37] Visentin, R., Man, C. Dalla, Cobelli, C.: One-day Bayesian cloning of type 1 diabetes subjects: Toward a single-day UVA/Padova type 1 diabetes simulator. IEEE Trans. Biomed. Engrg. 63 (2016), 11, 2416-2424. | DOI
[38] Wachowiak, M. P., Smolikova, R., Zheng, Y., Zurada, J. M., Elmaghraby, A. S.: An approach to multimodal biomedical image registration utilizing particle swarm optimization multimodal function optimization based on particle swarm optimization. IEEE Trans. Evol. Comput. 8 (2004), 3, 289-301. | DOI
[39] Wilinska, M. E., Hovorka, R.: Simulation models for in silico testing of closed-loop glucose controllers in type 1 diabetes. Drug Discov, Today Dis. 5 (2008), 289-298. | DOI
[40] Organization, World Health: Global Report in Diabetes. Printed in France, 2016.
[41] Zhan, C., Situ, W., Yeung, L. Fat, Tsang, P. Wai-Ming, YANG, G.: A parameter estimation method for biological systems modeled by ODEs/DDEs models using spline approximation and differential evolution algorithm. IEEE Trans. Computat. Biology Biomath. 11 (2014), 1066-1076. | DOI
Cité par Sources :