Controlling the stochastic sensitivity in thermochemical systems under incomplete information
Kybernetika, Tome 54 (2018) no. 1, pp. 96-109
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Complex dynamic regimes connected with the noise-induced mixed-mode oscillations in the thermochemical model of flow reactor are studied. It is revealed that the underlying reason of such excitability is in the high stochastic sensitivity of the equilibrium. The problem of stabilization of the excitable equilibrium regimes is investigated. We develop the control approach using feedback regulators which reduce the stochastic sensitivity and keep the randomly forced system near the stable equilibrium. We consider also a case when the information about system state is incomplete. Our new mathematical technique is applied to the stabilization of operating modes in the flow chemical reactors forced by random disturbances.
Complex dynamic regimes connected with the noise-induced mixed-mode oscillations in the thermochemical model of flow reactor are studied. It is revealed that the underlying reason of such excitability is in the high stochastic sensitivity of the equilibrium. The problem of stabilization of the excitable equilibrium regimes is investigated. We develop the control approach using feedback regulators which reduce the stochastic sensitivity and keep the randomly forced system near the stable equilibrium. We consider also a case when the information about system state is incomplete. Our new mathematical technique is applied to the stabilization of operating modes in the flow chemical reactors forced by random disturbances.
DOI : 10.14736/kyb-2018-1-0096
Classification : 60H10, 93E20
Keywords: stabilization; stochastic sensitivity; flow reactor; incomplete information
@article{10_14736_kyb_2018_1_0096,
     author = {Bashkirtseva, Irina},
     title = {Controlling the stochastic sensitivity in thermochemical systems under incomplete information},
     journal = {Kybernetika},
     pages = {96--109},
     year = {2018},
     volume = {54},
     number = {1},
     doi = {10.14736/kyb-2018-1-0096},
     mrnumber = {3780958},
     zbl = {06861616},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-1-0096/}
}
TY  - JOUR
AU  - Bashkirtseva, Irina
TI  - Controlling the stochastic sensitivity in thermochemical systems under incomplete information
JO  - Kybernetika
PY  - 2018
SP  - 96
EP  - 109
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-1-0096/
DO  - 10.14736/kyb-2018-1-0096
LA  - en
ID  - 10_14736_kyb_2018_1_0096
ER  - 
%0 Journal Article
%A Bashkirtseva, Irina
%T Controlling the stochastic sensitivity in thermochemical systems under incomplete information
%J Kybernetika
%D 2018
%P 96-109
%V 54
%N 1
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-1-0096/
%R 10.14736/kyb-2018-1-0096
%G en
%F 10_14736_kyb_2018_1_0096
Bashkirtseva, Irina. Controlling the stochastic sensitivity in thermochemical systems under incomplete information. Kybernetika, Tome 54 (2018) no. 1, pp. 96-109. doi: 10.14736/kyb-2018-1-0096

[1] Albert, A.: Regression and the Moore-Penrose Pseudoinverse. Academic Press, New York 1972. | DOI

[2] Anishchenko, V. S., Astakhov, V. V., Neiman, A. B., Vadivasova, T. E., Schimansky-Geier, L.: Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development. Springer-Verlag, Berlin/Heidelberg 2007. | MR

[3] Astrom, K. J.: Introduction to the Stochastic Control Theory. Academic Press, New York 1970. | MR

[4] Bashkirtseva, I., Ryashko, L.: On control of stochastic sensitivity. Automat. Rem. Contr. 69 (2008), 1171-1180. | DOI | MR

[5] Bashkirtseva, I., Chen, G., Ryashko, L.: Analysis of stochastic cycles in the Chen system. Int. J. Bifurcat. Chaos 20 (2010), 1439-1450. | DOI

[6] Bashkirtseva, I., Chen, G., Ryashko, L.: Stochastic equilibria control and chaos suppression for 3D systems via stochastic sensitivity synthesis. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 3381-3389. | DOI | MR

[7] Bashkirtseva, I., Chen, G., Ryashko, L.: Controlling the equilibria of nonlinear stochastic systems based on noisy data. J. Franklin Inst. 354 (2017), 1658-1672. | DOI | MR

[8] Gammaitoni, L., Hanggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70 (1998), 223-287. | DOI

[9] Gonzalez-Hernandez, J., Lopez-Martinez, R. R., Minjarez-Sosa, J. A.: Approximation, estimation and control of stochastic systems under a randomized discounted cost criterion. Kybernetika 45 (2009), 737-754.

[10] Guo, L., Wang, H.: Stochastic Distribution Control System Design: a Convex Optimization Approach. Springer-Verlag, New York 2010. | DOI

[11] Horsthemke, W., Lefever, R.: Noise-Induced Transitions. Theory and Applications in Physics, Chemistry, and Biology. Springer, Berlin 1984.

[12] Jakobsen, H. A.: Chemical Reactor Modeling: Multiphase Reactive Flows. Springer, Berlin 2014. | DOI

[13] Kawczyński, A. L., Nowakowski, B.: Stochastic transitions through unstable limit cycles in a model of bistable thermochemical system. Phys. Chem. Chem. Phys. 10 (2008), 289-296. | DOI

[14] Kushner, H. J.: Stochastic Stability and Control. Academic Press, New York 1967. | MR

[15] Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392 (2004), 321-424. | DOI

[16] Ryashko, L., Bashkirtseva, I.: Analysis of excitability for the FitzHugh-Nagumo model via a stochastic sensitivity function technique. Phys. Rev. E 83 (2011), 061109. | DOI

[17] Shen, B., Wang, Z., Shu, H.: Nonlinear Stochastic Systems with Incomplete Information, Filtering and Control. Springer, Berlin 2013. | DOI | MR

[18] Sun, J.-Q.: Stochastic Dynamics and Control. Elsevier, Amsterdam 2006. | DOI | MR

[19] Volter, B. V., Salnikov, I. Y.: Modeling and Optimization of Catalytic Processes (in Russian). Nauka, Moscow 1996.

[20] Wonham, W.: On the separation theorem of stochastic control. SIAM J. Control 6 (1968), 312-326. | DOI

[21] Zaks, M. A., Sailer, X., Schimansky-Geier, L.: Noise induced complexity: From subthreshold oscillations to spiking in coupled excitable systems. Chaos 15 (2005), 026117. | DOI | MR

[22] Zhang, J., Liu, Y., Mu, X.: Further results on global adaptive stabilisation for a class of uncertain stochastic nonlinear systems. | DOI

[23] Zheng, Y., Wang, Q., Danca, M.-F.: Noise-induced complexity: patterns and collective phenomena in a small-world neuronal network. Cogn. Neurodyn. 8 (2014), 143-149. | DOI

Cité par Sources :