Keywords: recursive least square; Kalman filter; modeling; complex processes
@article{10_14736_kyb_2018_1_0079,
author = {Rubio, Jos\'e de Jes\'us and Lughofer, Edwin and Plamen, Angelov and Novoa, Juan Francisco and Meda-Campa\~na, Jes\'us A.},
title = {A novel algorithm for the modeling of complex processes},
journal = {Kybernetika},
pages = {79--95},
year = {2018},
volume = {54},
number = {1},
doi = {10.14736/kyb-2018-1-0079},
mrnumber = {3780957},
zbl = {06861615},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-1-0079/}
}
TY - JOUR AU - Rubio, José de Jesús AU - Lughofer, Edwin AU - Plamen, Angelov AU - Novoa, Juan Francisco AU - Meda-Campaña, Jesús A. TI - A novel algorithm for the modeling of complex processes JO - Kybernetika PY - 2018 SP - 79 EP - 95 VL - 54 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-1-0079/ DO - 10.14736/kyb-2018-1-0079 LA - en ID - 10_14736_kyb_2018_1_0079 ER -
%0 Journal Article %A Rubio, José de Jesús %A Lughofer, Edwin %A Plamen, Angelov %A Novoa, Juan Francisco %A Meda-Campaña, Jesús A. %T A novel algorithm for the modeling of complex processes %J Kybernetika %D 2018 %P 79-95 %V 54 %N 1 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-1-0079/ %R 10.14736/kyb-2018-1-0079 %G en %F 10_14736_kyb_2018_1_0079
Rubio, José de Jesús; Lughofer, Edwin; Plamen, Angelov; Novoa, Juan Francisco; Meda-Campaña, Jesús A. A novel algorithm for the modeling of complex processes. Kybernetika, Tome 54 (2018) no. 1, pp. 79-95. doi: 10.14736/kyb-2018-1-0079
[1] Alanis, A. Y., Ricalde, L. J., Simetti, C., Odone, F.: Neural model with particle swarm optimization Kalman learning for forecasting in smart grids. Math. Problems Engrg. (2013), 9 pages. | DOI
[2] Alanis, A. Y., Sanchez, E. N., Loukianov, A. G.: A wind speed neural model with particle swarm optimization Kalman learning. In: International Joint Conference on Neural Networks 2006, pp. 1993-2000.
[3] Alanis, A. Y., Simetti, C., Ricalde, L. J., Odone, F.: A wind speed neural model with particle swarm optimization Kalman learning. In: World Automation Congress 2012, pp. 1-5. | MR
[4] Astrom, K. J., Wittenmark, B.: Adaptive Control. Second edition. Addison-Wesley Longman Publishing Co., Inc., Boston (1994).
[5] Bifet, A., Gavalda, R.: Kalman filters and adaptive windows for learning in data streams. In: Discovery Science (L. Todorovski, N. Lavrac, K. P. Jantke, eds.), Lecture Notes in Computer Science 4265 (2006), pp. 29-40, Springer, Berlin, Heidelberg. | DOI
[6] Čelikovský, S.: Topological equivalence and topological linearization of controlled dynamical systems. Kybernetika 31 (1995), 141-150. | MR
[7] Cerrada, M., Li, C., Sanchez, R. V., Pacheco, F., Cabrera, D., Valente, J.: A fuzzy transition based approach for fault severity prediction in helical gearboxes. Fuzzy Sets and Systems 337 (2018), 52-73. | DOI | MR
[8] Chen, G., Xie, Q., Shieh, L. S.: Fuzzy Kalman filtering. J. Inform. Sci. 109 (1998), 197-209. | DOI | MR
[9] Coelho, J. K., Pena, M.\.D., Romero, O. J.: Pore-scale modeling of oil mobilization trapped in a square cavity. IEEE Latin Amer. Trans. 14 (2016), 4, 1800-1807. | DOI
[10] Deng, Z., Wang, X., Hong, Y.: Distributed optimisation design with triggers for disturbed continuous-time multi-agent systems. IET Control Theory Appl. 11 (2017), 2, 282-290. | DOI | MR
[11] Dolinský, K., Čelikovský, S.: Kalman filter under nonlinear system transformations. In: American Control Conference 2012, pp. 4789-4794. | DOI
[12] Guo, S. M., Shieh, L. S., Chen, G., Coleman, N. P.: Observer-type Kalman innovation filter for uncertain linear systems. IEEE Trans. Aerospace Eelectron. Systems 37 (2001), 4, 1406-1418. | DOI
[13] E.Guillermo, J., Castellanos, L. J. Ricalde, Sanchez, E. N., Alanis, A. Y.: Detection of heart murmurs based on radial wavelet neural network with Kalman learning. Neurocomputing 164 (2015), 307-317. | DOI
[14] Hernandez-Vargas, E. A., Colaneri, P., Middleton, R. H.: Switching strategies to mitigate HIV mutation. IEEE Trans. Control Systems Technol. 22 (2014), 4, 1623-1628. | DOI
[15] Hernandez-Vargas, E. A., Colaneri, P., Middleton, R. H.: Optimal therapy scheduling for a simplified HIV infection model. Automatica 49 (2013), 2874-2880. | DOI | MR
[16] Kalman, R. E.: A New approach to linear filtering and prediction problems. Trans. ASME, J. Basic Engrg. 82 (1960), 35-45. | DOI
[17] Khemchandani, R., Pal, A., Chandra, S.: Fuzzy least squares twin support vector clustering. Neural Computing Appl. 29 (2018), 553-563. | DOI
[18] Lizasoain, I., Gomez, M.: Products of lattice-valued fuzzy transition systems and induced fuzzy transformation semigroups. Fuzzy Sets and Systems 317 (2017), 133-150. | DOI
[19] Liu, F., Zhao, R., Tan, T., Zhang, Q.: Existence and verification for decentralized nondeterministic discrete-event systems under bisimulation equivalence. Asian J. Control 18 (2016), 5, 1679-1687. | DOI | MR
[20] Ljung, L.: System Identification: Theory for the User. Prentice Hall PTR, Prentic Hall Inc., Upper Saddle River, New Jersey 1999.
[21] Lughofer, E.: Evolving Fuzzy Systems - Methodologies, Advanced Concepts and Applications. Springer, Berlin, Heidelberg 2011.
[22] Lughofer, E.: Single-pass active learning with conflict and ignorance. Evolving Systems 3 (2012), 4, 251-271. | DOI
[23] Lughofer, E., Weigl, E., Heidl, W., Eitzinger, C., Radauer, T.: Recognizing input space and target concept drifts in data streams with scarcely labeled and unlabelled instances. Inform. Sci. 355-356 (2016), 127-151. | DOI
[24] Mansouri, I., Gholampour, A., Kisi, O., Ozbakkaloglu, T.: Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques. Neural Computing Appl. 29 (2018), 873-888. | DOI
[25] Nguyen, V. K., Klawonn, F., Mikolajczyk, R., Hernandez-Vargas, E. A.: Analysis of practical identifiability of a viral infection model. Plos One (2016), 1-16. | DOI
[26] Pratama, M., Lu, J., Anavatti, S., Lughofer, E., Lim, C. P.: An incremental meta-cognitive-based scaffolding fuzzy neural network. Neurocomputing 171 (2016), 89-105. | DOI
[27] Rehák, B., Čelikovský, S.: Numerical method for the solution of the regulator equation with application to nonlinear tracking. Automatica 44 (2008), 1358-1365. | DOI | MR
[28] Rubio, J. J.: Least square neural network model of the crude oil blending process. Neural Networks 78 (2016), 88-96. | DOI
[29] Rubio, J. J.: Stable Kalman filter and neural network for the chaotic systems identification. J. Franklin Inst. 354 (2017), 7444-7462. | DOI
[30] Rubio, J. J.: SOFMLS: Online self-organizing fuzzy modified least square network. IEEE Trans. Fuzzy Systems 17 (2009), 6, 1296-1309. | DOI
[31] Sanchez, E. N., Alanis, A. Y., Rico, J.: Electric load demand prediction using neural networks trained by Kalman filtering. In: IEEE International Conference on Neural Networks 2004, pp. 2111-2775. | DOI
[32] Sun, X. M., Wang, X. F., Hong, Y., Xia, W.: Stabilization control design with parallel-triggering mechanism. IEEE Trans. Industr. Electron. 64 (2017), 3260-3267. | DOI
[33] Weng, Z., Chen, G., Shieh, L. S., Larsson, J.: Evolutionary programming Kalman filter. Inform. Sci. 129 (2000), 197-210. | DOI | MR
[34] Wu, H., Deng, Y.: Logical characterizations of simulation and bisimulation for fuzzy transition systems. Fuzzy Sets and Systems 301 (2016), 19-36. | DOI | MR
[35] Wu, H., Deng, Y.: Distribution-based behavioural distance for nondeterministic fuzzy transition systems. IEEE Trans. Fuzzy Systems 99 (2017), 1-1. | DOI
[36] Wu, H., Chen, Y., Bu, T., Deng, Y.: Algorithmic and logical characterizations of bisimulations for non-deterministic fuzzy transition systems. Fuzzy Sets and Systems 333 (2017), 106-123. | DOI | MR
[37] Xu, D., Wang, X., Hong, Y., Jiang, Z. P.: Global robust distributed output consensus of multi-agent nonlinear systems: an internal model approach. Systems Control Lett. 87 (2016), 64-69. | DOI | MR
Cité par Sources :