Asynchronous sampling-based leader- following consensus in second-order multi-agent systems
Kybernetika, Tome 54 (2018) no. 1, pp. 61-78
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper studies the leader-following consensus problem of second-order multi-agent systems with directed topologies. By employing the asynchronous sampled-data protocols, sufficient conditions for leader-following consensus with both constant velocity leader and variable velocity leader are derived. Leader-following quasi-consensus can be achieved in multi-agent systems when all the agents sample the information asynchronously. Numerical simulations are provided to verify the theoretical results.
This paper studies the leader-following consensus problem of second-order multi-agent systems with directed topologies. By employing the asynchronous sampled-data protocols, sufficient conditions for leader-following consensus with both constant velocity leader and variable velocity leader are derived. Leader-following quasi-consensus can be achieved in multi-agent systems when all the agents sample the information asynchronously. Numerical simulations are provided to verify the theoretical results.
DOI : 10.14736/kyb-2018-1-0061
Classification : 93C57, 93D05
Keywords: leader-following; multi-agent systems; consensus; asynchronous sampling
@article{10_14736_kyb_2018_1_0061,
     author = {Wang, Zhengxin and Feng, Yuanzhen and Zheng, Cong and Lu, Yanling and Pan, Lijun},
     title = {Asynchronous sampling-based leader- following consensus in second-order multi-agent systems},
     journal = {Kybernetika},
     pages = {61--78},
     year = {2018},
     volume = {54},
     number = {1},
     doi = {10.14736/kyb-2018-1-0061},
     mrnumber = {3780956},
     zbl = {06861614},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-1-0061/}
}
TY  - JOUR
AU  - Wang, Zhengxin
AU  - Feng, Yuanzhen
AU  - Zheng, Cong
AU  - Lu, Yanling
AU  - Pan, Lijun
TI  - Asynchronous sampling-based leader- following consensus in second-order multi-agent systems
JO  - Kybernetika
PY  - 2018
SP  - 61
EP  - 78
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-1-0061/
DO  - 10.14736/kyb-2018-1-0061
LA  - en
ID  - 10_14736_kyb_2018_1_0061
ER  - 
%0 Journal Article
%A Wang, Zhengxin
%A Feng, Yuanzhen
%A Zheng, Cong
%A Lu, Yanling
%A Pan, Lijun
%T Asynchronous sampling-based leader- following consensus in second-order multi-agent systems
%J Kybernetika
%D 2018
%P 61-78
%V 54
%N 1
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-1-0061/
%R 10.14736/kyb-2018-1-0061
%G en
%F 10_14736_kyb_2018_1_0061
Wang, Zhengxin; Feng, Yuanzhen; Zheng, Cong; Lu, Yanling; Pan, Lijun. Asynchronous sampling-based leader- following consensus in second-order multi-agent systems. Kybernetika, Tome 54 (2018) no. 1, pp. 61-78. doi: 10.14736/kyb-2018-1-0061

[1] Boyd, S., Ghaoui, L. El, Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia 1994. | DOI | Zbl

[2] Chen, Y., Dong, H., Lü, J., Sun, X., Liu, K.: Robust consensus of nonlinear multiagent systems with switching topology and bounded noises. IEEE Trans. Cybern. 46 (2016), 6, 1276-1285. | DOI

[3] Ding, L., Zheng, W. X.: Consensus tracking in heterogeneous nonlinear multi-agent networks with asynchronous sampled-data communication. Syst. Control Lett. 96 (2016), 151-157. | DOI | MR

[4] Fridman, E., Dambrine, M.: Control under quantization, saturation and delay: An LMI approach. Automatica 45 (2009), 10, 2258-2264. | DOI | MR | Zbl

[5] Gao, Y., Wang, L.: Sampled-data based consensus of continuous-time multi-agent systems with time-varying topology. IEEE Trans. Automat. Contr. 56 (2011), 5, 1226-1231. | DOI

[6] Gao, Y., Zuo, M., Jiang, T., Du, J., Ma, J.: Asynchronous consensus of multiple second-order agents with partial state information. Int. J. Syst. Sci. 44 (2013), 5, 966-977. | DOI | MR

[7] Gu, K., Kharitonov, V. L., Chen, J.: Stability of Time-Delay Systems. Birkhäuser, Boston 2003. | DOI | MR

[8] Guan, Z.-H., Sun, F.-L., Wang, Y.-W., Li, T.: Finite-time consensus for leader-following second-order multi-agent networks. IEEE Trans. Circuits Syst. I: Regul. Pap. 59 (2012), 11, 2646-2654. | DOI | MR

[9] He, W., Chen, G., Han, Q.-L., Du, W., Cao, J., Qian, F.: Multi-agent systems on multilayer networks: Synchronization analysis and network design. IEEE Trans. Syst. Man Cybernet.: Syst. 47 (2017), 7, 1655-1667. | DOI

[10] He, W., Qian, F., Lam, J., Chen, G., Han, Q.-L., Kurths, J.: Quasi-Synchronization of heterogeneous dynamic networks via distributed impulsive control: Error estimation, optimization and design. Automatica 62 (2015), 249-262. | DOI

[11] He, W., Zhang, B., Han, Q.-L., Qian, F., Kurths, J., Cao, J.: Leader-following consensus of nonlinear multiagent systems with stochastic sampling. IEEE Trans. Cybern. 47 (2017), 2, 327-338.

[12] Hu, G.: Robust consensus tracking of a class of second-order multi-agent dynamic systems. Syst. Control Lett. 61 (2012), 1, 134-142. | DOI

[13] Huang, N., Duan, Z., Chen, G. R.: Some necessary and sufficient conditions for consensus of second-order multi-agent systems with sampled position data. Automatica 63 (2016), 148-155. | DOI | MR

[14] Hong, Y., Chen, G., Bushnell, L.: Distributed observers design for leader-following control of multi-agent networks. Automatica 44 (2008), 3, 846-850. | DOI | MR

[15] Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42 (2006), 7, 1177-1182. | DOI | MR | Zbl

[16] Horn, R. A., Johnson, C. R.: Matrix Analysis. Secod edition. Cambridge University Press, New York 2013.

[17] Li, Z., Ren, W., Liu, X., Xie, L.: Distributed consensus of linear multi-agent systems with adaptive dynamic protocols. Automatica 49 (2013), 1986-1995. | DOI | MR

[18] Liu, X., Ho, D. W., Cao, J., Xu, W.: Discontinuous observers design for finite-time consensus of multiagent systems with external disturbances. IEEE Trans. Neural Netw. Learn Syst. 28 (2017), 11, 2826-2830. | DOI

[19] Liu, Y., Zhao, Y., Shi, Z.: Sampled-data based consensus for multiple harmonic oscillators with directed switching topology. J. Franklin Inst. 354 (2017), 3519-3539. | DOI | MR

[20] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Contr. 49 (2004), 9, 1520-1533. | DOI

[21] Park, P., Ko, J. W., Jeong, C.: Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47 (2011), 1, 235-238. | DOI

[22] Peng, K., Yang, Y.: Leader-following consensus problem with a varying-velocity leader and time-varying delays. Physica A 388 (2009), 2-3, 193-208. | DOI

[23] Ren, W., Beard, R. W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Automat. Contr. 50 (2005), 5, 655-661. | DOI | MR

[24] Ren, W.: On consensus algorithms for double-integrator dynamics. IEEE Trans. Automat. Contr. 53 (2008), 6, 1503-1509. | DOI | MR

[25] Seo, J. H., Shim, H., Back, J.: Consensus of high-order linear systems using dynamic output feedback compensator: Low gain approach. Automatica 45 (2009), 11, 2659-2664. | DOI | MR

[26] Shen, B., Wang, Z., Liu, X.: Sampled-data synchronization control of dynamical networks with stochastic sampling. IEEE Trans. Automat. Contr. 57 (2012), 10, 2644-2650. | DOI | MR

[27] Song, Q., Cao, J., Yu, W.: Second-order leader-following consensus of nonlinear multi-agent systems via pinning control. Syst. Control Lett. 59 (2010), 9, 553-562. | DOI | MR

[28] Wen, G., Duan, Z., Yu, W., Chen, G.: Consensus in multi-agent systems with communication constraints. Int. J. Robust Nonl. Contr. 22 (2012), 2, 170-182. | DOI | MR

[29] Wang, Z., Cao, J.: Quasi-consensus of second-order leader-following multi-agent systems. IET Contr. Theory Appl. 6 (2012), 4, 545-551. | DOI

[30] Wang, Z., Jiang, G., Yu, W., He, W., Cao, J., Xiao, M.: Synchronization of coupled heterogeneous complex networks. J. Franklin Inst. 354 (2017), 10, 4102-4125. | DOI

[31] Xiao, F., Wang, L.: Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays. IEEE Trans. Automat. Contr. 53 (2008), 8, 1804-1816. | DOI

[32] Yu, W., Chen, G., Cao, M.: Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. Automatica 46 (2010), 8, 1089-1095. | DOI | MR

[33] Yu, W., Chen, G., Cao, M., Kurths, J.: Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics. IEEE Trans. Syst. Man Cybern. B: Cybern. 40 (2010), 3, 881-891. | DOI

[34] Yu, W., Chen, G., Cao, M., Ren, W.: Delay-induced consensus and quasi-consensus in multi-agent dynamical systems. IEEE Trans. Circuits Syst. I: Regul. Pap. 60 (2013), 10, 2679-2687. | DOI | MR

[35] Yu, W., Zheng, W. X., Chen, G., Ren, W., Cao, J.: Second-order consensus in multi-agent dynamical systems with sampled position data. Automatica 47 (2011), 7, 1496-1503. | DOI

[36] Zhan, J., Li, X.: Asynchronous consensus of multiple double-integrator agents with arbitrary sampling intervals and communication delays. IEEE Trans. Circuits Syst. I: Regul. Pap. 62 (2015), 9, 2301-2311. | DOI

[37] Zhu, W., Cheng, D.: Leader-following consensus of second-order agents with multiple time-varying delays. Automatica 46 (2010), 12, 1994-1999. | DOI | MR

Cité par Sources :