Keywords: signal segmentation; denoising; sparsity; piecewise-polynomial signal model; convex optimization
@article{10_14736_kyb_2017_6_1131,
author = {Rajmic, Pavel and Novosadov\'a, Michaela and Da\v{n}kov\'a, Marie},
title = {Piecewise-polynomial signal segmentation using convex optimization},
journal = {Kybernetika},
pages = {1131--1149},
year = {2017},
volume = {53},
number = {6},
doi = {10.14736/kyb-2017-6-1131},
mrnumber = {3758939},
zbl = {06861645},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-6-1131/}
}
TY - JOUR AU - Rajmic, Pavel AU - Novosadová, Michaela AU - Daňková, Marie TI - Piecewise-polynomial signal segmentation using convex optimization JO - Kybernetika PY - 2017 SP - 1131 EP - 1149 VL - 53 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-6-1131/ DO - 10.14736/kyb-2017-6-1131 LA - en ID - 10_14736_kyb_2017_6_1131 ER -
%0 Journal Article %A Rajmic, Pavel %A Novosadová, Michaela %A Daňková, Marie %T Piecewise-polynomial signal segmentation using convex optimization %J Kybernetika %D 2017 %P 1131-1149 %V 53 %N 6 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-6-1131/ %R 10.14736/kyb-2017-6-1131 %G en %F 10_14736_kyb_2017_6_1131
Rajmic, Pavel; Novosadová, Michaela; Daňková, Marie. Piecewise-polynomial signal segmentation using convex optimization. Kybernetika, Tome 53 (2017) no. 6, pp. 1131-1149. doi: 10.14736/kyb-2017-6-1131
[1] Angelosante, D., Giannakis, G. B.: Group Lassoing change-points in piecewise-constant AR processes. EURASIP J. Advances Signal Process. 2012 (2012), 1, 1-16. | DOI
[2] Bleakley, K., Vert, J. P.: The group fused Lasso for multiple change-point detection. Technical Report.
[3] Bruckstein, A. M., Donoho, D. L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev.51 (2009), 1, 34-81. | DOI | MR
[4] Candes, E. J., Wakin, M. B.: An introduction to compressive sampling. IEEE Signal Process. Magazine 25 (2008), 2, 21-30. | DOI
[5] Candes, E. J., Wakin, M. B., Boyd, S. P.: Enhancing sparsity by reweighted $\ell_1$ minimization. J. Fourier Analysis Appl. 14 (2008), 877-905. | DOI | MR
[6] Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40 (2011), 1, 120-145. | DOI | MR
[7] Chartrand, R.: Shrinkage mappings and their induced penalty functions. In: IEEE International Conference on Acoustics, Speech, and Signal Processing 2014. | DOI
[8] Combettes, P., Pesquet, J.: Proximal splitting methods in signal processing. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering 2011, pp. 185-212. | DOI | MR
[9] Condat, L.: A generic proximal algorithm for convex optimization - application to total variation minimization. Signal Process. Lett., IEEE 21 (2014), 8, 985-989. | DOI
[10] Donoho, D. L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via $\ell_1$ minimization. Proc. National Acad. Sci. 100 (2003), 5, 2197-2202. | DOI | MR
[11] Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. Springer 2010. | MR
[12] Fornasier, M., ed.: Theoretical Foundations and Numerical Methods for Sparse Recovery. De Gruyter, Berlin, Boston 2010. | DOI | MR
[13] Frecon, J., Pustelnik, N., Abry, P., Condat, L.: On-the-fly approximation of multivariate total variation minimization. IEEE Trans. Signal Process. 64 (2016), 9, 2355-2364. | DOI | MR
[14] Giryes, R., Elad, M., Bruckstein, A. M.: Sparsity based methods for overparameterized variational problems. SIAM J. Imaging Sci. 8 (2015), 3, 2133-2159. | DOI | MR
[15] Nettest, GN: Understanding OTDR. GN Nettest (2000).
[16] Golub, G. H., Loan, C. F. V.: Matrix Computations. Third edition. Johns Hopkins University Press 1996. | MR
[17] Kim, S. J., Koh, K., Boyd, S., Gorinevsky, D.: $\ell_1$ trend filtering. SIAM Rev. 51 (2009), 2, 339-360. | DOI | MR
[18] Komodakis, N., Pesquet, J.: Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems. IEEE Signal Process. Magazine 32 (2015), 6, 31-54. | DOI
[19] Kowalski, M.: Sparse regression using mixed norms. Applied Comput. Harmonic Analysis 27 (2009), 3, 303-324. | DOI | MR
[20] Kowalski, M., Torrésani, B.: Structured Sparsity: from Mixed Norms to Structured Shrinkage. In: SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations (R. Gribonval, ed.), Inria Rennes - Bretagne Atlantique 2009, pp. 1-6.
[21] Kutyniok, G., Lim, W. Q.: Compactly supported shearlets are optimally sparse. J. Approx. Theory 163 (2011), 11, 1564-1589. | DOI | MR
[22] Levin, D.: Between moving least-squares and moving least-$\ell_1$. BIT Numerical Math. 55 (2015), 3, 781-796. | DOI | MR
[23] Neubauer, J., Veselý, V.: Change point detection by sparse parameter estimation. Informatica 22 (2011), 1, 149-164. | DOI | MR
[24] Novosadová, M., Rajmic, P.: Piecewise-polynomial curve fitting using group sparsity. In: Proc. 8th International Congress on Ultra Modern Telecommunications and Control Systems, Lisabon 2016, pp. 317-322. | DOI
[25] Novosadová, M., Rajmic, P.: Piecewise-polynomial signal segmentation using reweighted convex optimization. In: Proc. 40th International Conference on Telecommunications and Signal Processing (TSP), Barcelona 2017, pp. 769-774. | DOI
[26] Šorel, M., Šroubek, F.: Fast convolutional sparse coding using matrix inversion lemma. Digital Signal Process. 55 (2016), 44-51. | DOI
[27] Perraudin, N., Shuman, D. I., Puy, G., Vandergheynst, P.: Unlocbox A Matlab convex optimization toolbox using proximal splitting methods (2014).
[28] Pock, T.: Fast Total Variation for Computer Vision. Dissertation Thesis, Graz University of Technology 2008.
[29] Rajmic, P.: Exact risk analysis of wavelet spectrum thresholding rules. In: Electronics, Circuits and Systems, 2003. ICECS 2003. Proc. 10th IEEE International Conference 2 (2003), pp. 455-458. | DOI
[30] Rajmic, P., Novosadová, M.: On the limitation of convex optimization for sparse signal segmentation. In: Proc. 39th International Conference on Telecommunications and Signal Processing, Brno University of Technology 2016, pp. 550-554. | DOI
[31] Selesnick, I. W., Arnold, S., Dantham, V. R.: Polynomial smoothing of time series with additive step discontinuities. IEEE Trans. Signal Process. 60 (2012), 12, 6305-6318. | DOI | MR
[32] Shem-Tov, S., Rosman, G., Adiv, G., Kimmel, R., Bruckstein, A. M.: Innovations for Shape Analysis. Chap. On Globally Optimal Local Modeling: From Moving Least Squares to Over-parametrization. In: Mathematics and Visualization, Springer 2012, pp. 379-405. | DOI | MR
[33] Starck, J. L., Candes, E. J., Donoho, D. L.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11 (2002), 6, 670-684. | DOI | MR
[34] Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. Royal Statist. Soc. Ser. B (Methodological) 58 (1996), 1, 267-288. | MR
[35] Tibshirani, R. J.: Adaptive piecewise polynomial estimation via trend filtering. Ann. Statist. 42 (2014), 1, 285-323. | DOI | MR
[36] Tropp, J.: Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inform. Theory 50 (2004), 2231-2242. | DOI | MR
[37] Zhang, B., Geng, J., Lai, L.: Multiple change-points estimation in linear regression models via sparse group lasso. IEEE Trans. Signal Process. 63 (2015), 9, 2209-2224. | DOI | MR
Cité par Sources :