Keywords: robotic snake; local control; nilpotent approximation
@article{10_14736_kyb_2017_6_1118,
author = {Hrdina, Jaroslav and Matou\v{s}ek, Radomil and N\'avrat, Ale\v{s} and Va\v{s}{\'\i}k, Petr},
title = {Nilpotent approximation of a trident snake robot controlling distribution},
journal = {Kybernetika},
pages = {1118--1130},
year = {2017},
volume = {53},
number = {6},
doi = {10.14736/kyb-2017-6-1118},
mrnumber = {3758938},
zbl = {06861644},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-6-1118/}
}
TY - JOUR AU - Hrdina, Jaroslav AU - Matoušek, Radomil AU - Návrat, Aleš AU - Vašík, Petr TI - Nilpotent approximation of a trident snake robot controlling distribution JO - Kybernetika PY - 2017 SP - 1118 EP - 1130 VL - 53 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-6-1118/ DO - 10.14736/kyb-2017-6-1118 LA - en ID - 10_14736_kyb_2017_6_1118 ER -
%0 Journal Article %A Hrdina, Jaroslav %A Matoušek, Radomil %A Návrat, Aleš %A Vašík, Petr %T Nilpotent approximation of a trident snake robot controlling distribution %J Kybernetika %D 2017 %P 1118-1130 %V 53 %N 6 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-6-1118/ %R 10.14736/kyb-2017-6-1118 %G en %F 10_14736_kyb_2017_6_1118
Hrdina, Jaroslav; Matoušek, Radomil; Návrat, Aleš; Vašík, Petr. Nilpotent approximation of a trident snake robot controlling distribution. Kybernetika, Tome 53 (2017) no. 6, pp. 1118-1130. doi: 10.14736/kyb-2017-6-1118
[1] Bao-Li, Ma: Local exponential regulation of nonholonomic systems in approximate chained form with applications to off-axle tractor-trailers. J. Robotics 2007 (2007), 1-8. | DOI
[2] Cai, Q., Huang, T., Sachkov, Y. L., Yang, X.: Geodesics in the Engel group with a sub-Lorentzian metric. J. Dynamical Control Systems 22 (2016), 465-483. | DOI | MR
[3] Hermes, H.: Nilpotent approximations of control systems and distributions. Siam J. Control Optim. 24 (1986), 731-736. | DOI | MR
[4] J.Hrdina: Local controllability of trident snake robot based on sub-Riemannian extremals. Note di Matematica 37 (2017), 93-102. | MR
[5] Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: Geometric Control of the Trident Snake Robot Based on CGA. Adv. Appl. Clifford Algebr. 27 (2017), 633-645. | DOI | MR
[6] Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: CGA-based robotic snake control. Adv. Appl. Clifford Algebr. 27 (2017), 633-645. | DOI | MR
[7] Ishikawa, M.: Trident snake robot: Locomotion analysis and control. In: Proc. IFAC NOLCOS, IFAC Nonlinear Control Systems, Stuttgart 2004, pp. 1169-1174. | DOI
[8] Ishikawa, M., Fukiro, T.: Control of the double-linked trident snake robot based on the analysis of its oscillatory dynamics. In: Proc. IEEE/RSJ IROS 2009, pp. 1314-1319. | DOI
[9] Ishikawa, M., Minami, Y., Sugie, T.: Development and control experiment of the trident snake robot. IEEE/ASME Trans. Mechatron. 15 (2010), 9-16. | DOI
[10] Jakubiak, J., Tchon, K., Janiak, M.: Motion planning of the trident snake robot: an endogenous configuration space approach. In: ROMANSY 18 Robot Design, Dynamics and Control: Proc. Eighteenth CISM-IFToMM Symposium (V. P. Castelli and W. Schiehlen, eds.), Springer, Vienna 2010, pp. 159-166. | DOI | MR
[11] Jarzebowska, E.: Stabilizability and motion tracking conditions for mechanical nonholonomic control systems. Math. Problems Engrg. 2007 (2007), 1-20. | DOI | MR
[12] Jean, F.: Control of Nonholonomic Systems: From Sub-Riemannian Geometry to Motion Planning. Springer International Publishing, New York 2014. | DOI | MR
[13] Liljebäck, P., Pettersen, K. Y., Stavdahl, Ø., Gravdahl, J. T.: Snake Robots, Modelling, Mechatronics and Control. Springer-Verlag, London 2013. | DOI
[14] Meiying, O., Shengwei, G., Xianbing, W., Kexiu, D.: Finite-time tracking control of multiple nonholonomic mobile robots with external disturbances. Kybernetika 51 (2015), 1049-1067. | DOI | MR
[15] Murray, R. M., Zexiang, L., Sastry, S. S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton 1994. | MR
[16] Návrat, A., Matoušek, R.: Trident snake control based on CGA. Mendel 2015: Recent Advances in Computer Science 378 (2015), 375-385. | DOI
[17] Návrat, A., Vašík, P: On geometric control models of a robotic snake. Note di Matematica 37 (2017), 119-129. | MR
[18] Pietrowska, Z., Tchon, K.: Dynamics and motion planning of trident snake robot. J. Intelligent Robotic Systems 75 (2014), 17-28. | DOI
[19] Selig, J. M.: Geometric Fundamentals of Robotics. Second edition. Springer, New York 2004. | DOI | MR
[20] Transeth, A. A., Pettersen, K. Y., Liljebäck, P.: A survey on snake robot modeling and locomotion. Robotica 27 (2009), 999-1015. | DOI
[21] Venditelli, M., Oriolo, G., Jean, F., Laumond, J. P.: Nonhomogeneous nilpotent approximations for nonholonomic systems with singularities. IEEE Trans. Automat. Control 49 (2004), 261-266. | DOI | MR
Cité par Sources :