Nilpotent approximation of a trident snake robot controlling distribution
Kybernetika, Tome 53 (2017) no. 6, pp. 1118-1130
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We construct a privileged system of coordinates with respect to the controlling distribution of a trident snake robot and, furthermore, we construct a nilpotent approximation with respect to the given filtration. Note that all constructions are local in the neighbourhood of a particular point. We compare the motions corresponding to the Lie bracket of the original controlling vector fields and their nilpotent approximation.
We construct a privileged system of coordinates with respect to the controlling distribution of a trident snake robot and, furthermore, we construct a nilpotent approximation with respect to the given filtration. Note that all constructions are local in the neighbourhood of a particular point. We compare the motions corresponding to the Lie bracket of the original controlling vector fields and their nilpotent approximation.
DOI : 10.14736/kyb-2017-6-1118
Classification : 93B27
Keywords: robotic snake; local control; nilpotent approximation
@article{10_14736_kyb_2017_6_1118,
     author = {Hrdina, Jaroslav and Matou\v{s}ek, Radomil and N\'avrat, Ale\v{s} and Va\v{s}{\'\i}k, Petr},
     title = {Nilpotent approximation of a trident snake robot controlling distribution},
     journal = {Kybernetika},
     pages = {1118--1130},
     year = {2017},
     volume = {53},
     number = {6},
     doi = {10.14736/kyb-2017-6-1118},
     mrnumber = {3758938},
     zbl = {06861644},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-6-1118/}
}
TY  - JOUR
AU  - Hrdina, Jaroslav
AU  - Matoušek, Radomil
AU  - Návrat, Aleš
AU  - Vašík, Petr
TI  - Nilpotent approximation of a trident snake robot controlling distribution
JO  - Kybernetika
PY  - 2017
SP  - 1118
EP  - 1130
VL  - 53
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-6-1118/
DO  - 10.14736/kyb-2017-6-1118
LA  - en
ID  - 10_14736_kyb_2017_6_1118
ER  - 
%0 Journal Article
%A Hrdina, Jaroslav
%A Matoušek, Radomil
%A Návrat, Aleš
%A Vašík, Petr
%T Nilpotent approximation of a trident snake robot controlling distribution
%J Kybernetika
%D 2017
%P 1118-1130
%V 53
%N 6
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-6-1118/
%R 10.14736/kyb-2017-6-1118
%G en
%F 10_14736_kyb_2017_6_1118
Hrdina, Jaroslav; Matoušek, Radomil; Návrat, Aleš; Vašík, Petr. Nilpotent approximation of a trident snake robot controlling distribution. Kybernetika, Tome 53 (2017) no. 6, pp. 1118-1130. doi: 10.14736/kyb-2017-6-1118

[1] Bao-Li, Ma: Local exponential regulation of nonholonomic systems in approximate chained form with applications to off-axle tractor-trailers. J. Robotics 2007 (2007), 1-8. | DOI

[2] Cai, Q., Huang, T., Sachkov, Y. L., Yang, X.: Geodesics in the Engel group with a sub-Lorentzian metric. J. Dynamical Control Systems 22 (2016), 465-483. | DOI | MR

[3] Hermes, H.: Nilpotent approximations of control systems and distributions. Siam J. Control Optim. 24 (1986), 731-736. | DOI | MR

[4] J.Hrdina: Local controllability of trident snake robot based on sub-Riemannian extremals. Note di Matematica 37 (2017), 93-102. | MR

[5] Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: Geometric Control of the Trident Snake Robot Based on CGA. Adv. Appl. Clifford Algebr. 27 (2017), 633-645. | DOI | MR

[6] Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: CGA-based robotic snake control. Adv. Appl. Clifford Algebr. 27 (2017), 633-645. | DOI | MR

[7] Ishikawa, M.: Trident snake robot: Locomotion analysis and control. In: Proc. IFAC NOLCOS, IFAC Nonlinear Control Systems, Stuttgart 2004, pp. 1169-1174. | DOI

[8] Ishikawa, M., Fukiro, T.: Control of the double-linked trident snake robot based on the analysis of its oscillatory dynamics. In: Proc. IEEE/RSJ IROS 2009, pp. 1314-1319. | DOI

[9] Ishikawa, M., Minami, Y., Sugie, T.: Development and control experiment of the trident snake robot. IEEE/ASME Trans. Mechatron. 15 (2010), 9-16. | DOI

[10] Jakubiak, J., Tchon, K., Janiak, M.: Motion planning of the trident snake robot: an endogenous configuration space approach. In: ROMANSY 18 Robot Design, Dynamics and Control: Proc. Eighteenth CISM-IFToMM Symposium (V. P. Castelli and W. Schiehlen, eds.), Springer, Vienna 2010, pp. 159-166. | DOI | MR

[11] Jarzebowska, E.: Stabilizability and motion tracking conditions for mechanical nonholonomic control systems. Math. Problems Engrg. 2007 (2007), 1-20. | DOI | MR

[12] Jean, F.: Control of Nonholonomic Systems: From Sub-Riemannian Geometry to Motion Planning. Springer International Publishing, New York 2014. | DOI | MR

[13] Liljebäck, P., Pettersen, K. Y., Stavdahl, Ø., Gravdahl, J. T.: Snake Robots, Modelling, Mechatronics and Control. Springer-Verlag, London 2013. | DOI

[14] Meiying, O., Shengwei, G., Xianbing, W., Kexiu, D.: Finite-time tracking control of multiple nonholonomic mobile robots with external disturbances. Kybernetika 51 (2015), 1049-1067. | DOI | MR

[15] Murray, R. M., Zexiang, L., Sastry, S. S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton 1994. | MR

[16] Návrat, A., Matoušek, R.: Trident snake control based on CGA. Mendel 2015: Recent Advances in Computer Science 378 (2015), 375-385. | DOI

[17] Návrat, A., Vašík, P: On geometric control models of a robotic snake. Note di Matematica 37 (2017), 119-129. | MR

[18] Pietrowska, Z., Tchon, K.: Dynamics and motion planning of trident snake robot. J. Intelligent Robotic Systems 75 (2014), 17-28. | DOI

[19] Selig, J. M.: Geometric Fundamentals of Robotics. Second edition. Springer, New York 2004. | DOI | MR

[20] Transeth, A. A., Pettersen, K. Y., Liljebäck, P.: A survey on snake robot modeling and locomotion. Robotica 27 (2009), 999-1015. | DOI

[21] Venditelli, M., Oriolo, G., Jean, F., Laumond, J. P.: Nonhomogeneous nilpotent approximations for nonholonomic systems with singularities. IEEE Trans. Automat. Control 49 (2004), 261-266. | DOI | MR

Cité par Sources :