Keywords: stochastic programming problems; probability constraints; stochastic dominance; stability; Wasserstein metric; ${\cal L}_{1}$ norm; Lipschitz property; empirical estimates; scenario; error approximation; financial applications; loan; debtor; installments; mortgage; bank
@article{10_14736_kyb_2017_6_1026,
author = {Ka\v{n}kov\'a, Vlasta},
title = {Stability, empirical estimates and scenario generation in stochastic optimization - applications in finance},
journal = {Kybernetika},
pages = {1026--1046},
year = {2017},
volume = {53},
number = {6},
doi = {10.14736/kyb-2017-6-1026},
mrnumber = {3758933},
zbl = {06861639},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-6-1026/}
}
TY - JOUR AU - Kaňková, Vlasta TI - Stability, empirical estimates and scenario generation in stochastic optimization - applications in finance JO - Kybernetika PY - 2017 SP - 1026 EP - 1046 VL - 53 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-6-1026/ DO - 10.14736/kyb-2017-6-1026 LA - en ID - 10_14736_kyb_2017_6_1026 ER -
%0 Journal Article %A Kaňková, Vlasta %T Stability, empirical estimates and scenario generation in stochastic optimization - applications in finance %J Kybernetika %D 2017 %P 1026-1046 %V 53 %N 6 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-6-1026/ %R 10.14736/kyb-2017-6-1026 %G en %F 10_14736_kyb_2017_6_1026
Kaňková, Vlasta. Stability, empirical estimates and scenario generation in stochastic optimization - applications in finance. Kybernetika, Tome 53 (2017) no. 6, pp. 1026-1046. doi: 10.14736/kyb-2017-6-1026
[1] L.Dai, Chen, C. H., Birge, J. R.: Convergence properties of two-stage stochastic programming. J. Optim. Theory Appl. 106 (2000), 489-509. | DOI | MR
[2] Dupačová, J., Wets, R. J.-B.: Asymptotic behaviour of statistical estimates and optimal solutions of stochastic optimization problems. Ann. Statist. 16 (1984), 1517-1549. | DOI | MR
[3] Dupačová, J., Hurt, J., Štěpán, J.: Stochastic Modelling in Economics and Finance. Kluwer, Dordrecht 2002. | MR
[4] Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 (1963), 301, 13-30. | DOI | MR
[5] Houda, M., Kaňková, V.: Empirical estimates in economic and financial optimization problems. Bull. Czech Econometr. Soc. 19 (2012), 29, 50-69.
[6] Kaniovski, Y. M., King, A. J., Wets, R. J.-B.: Probabilistic bounds (via large deviations) for the solutions of stochastic programming problems. Ann. Oper. Res. 56 (1995), 189-208. | DOI | MR | Zbl
[7] Kaňková, V.: Optimum solution of a stochastic optimization problem with unknown parameters. In: Trans. 7th. Prague Conf. 1974, Academia, Prague 1977, pp. 239-244. | MR
[8] Kaňková, V.: An approximative solution of stochastic optimization problem. In: Trans. 8th. Prague Conference, Academia, Prague 1978, pp. 349-353. | DOI | MR
[9] Kaňková, V.: Uncertainty in stochastic programming. In: Proc. Inter. Conf. on Stoch. Optim., Kiev 1984 (V. I Arkin and R. J.-B. Wets, eds.), Lecture Notes in Control and Information Sciences 81, Springer, Berlin 1986, pp. 393-401. | DOI | MR
[10] Kaňková, V.: On the stability in stochastic programming: the case of individual probability constraints. Kybernetika 33 (1997), 5, 525-546. | MR | Zbl
[11] Kaňková, V., Houda, M.: Empirical estimates in stochastic programming. In: Proc. Prague Stochastics 2006 (M. Hušková and M. Janžura, eds.), MATFYZPRESS, Prague 2006, pp. 426-436. | Zbl
[12] Kaňková, V.: Multistage stochastic programs via autoregressive sequences and individual probability constraints. Kybernetika 44 (2008), 2, 151-170. | MR
[13] Kaňková, V.: Empirical estimates in optimization problems; survey with special regard to heavy tails and dependent samples. Bull.Czech Econometric. soc. 19 (2012), 30, 92-111.
[14] Kaňková, V., Houda, M.: Thin and heavy tails in stochastic programming. Kybernetika 51 (2015), 3, 433-456. | DOI | MR
[15] Kaňková, V.: Scenario generation via ${\cal L}_{1} $ norm. In: Proc. 33rd Inter. Conf. Mathematical Methods in Economics 2015 (D. Marinčík, J. Ircingová and P. Janeček, eds.), Published by West Bohemia, Plzeň 2015, pp. 331-336.
[16] Kaňková, V.: A note on optimal value of loans. In: Proc. 34th Inter. Conf. Mathematical methods in economics 2016 (A. Kocourek and M. Vavroušek, eds.), Technical University Liberec, Liberec 2016, pp, 371-376.
[17] Luderer, B., Nollau, V., Vetters, K.: Mathematical Formulas for Economists. Third edition. Springer Science and Media, 2006. | DOI | MR
[18] Pflug, G. Ch.: Scenarion tree generation for multiperiod finncial optimization by optimal discretizatin. Math. Program. Ser. B 89 (2001), 251-271. | DOI | MR
[19] Pflug, G. Ch.: Stochastic Optimization and Statistical Inference. In: Stochastic Programming, Handbooks in Operations Research and Managemennt Science, Vol. 10 (A. Ruszczynski and A. A. Shapiro, eds.), Elsevier, Amsterdam 2003, pp. 427-480. | DOI | MR
[20] Rockafellar, R., Wets, R. J. B.: Variational Analysis. Springer, Berlin 1983. | DOI | Zbl
[21] Römisch, W., Schulz, R.: Stability of solutions for stochastic programs with complete recourse. Math. Oper. Res. 18 (1993), 590-609. | DOI | MR
[22] Römisch, W.: Stability of Stochastic Programming Problems. In: Stochastic Programming, Handbooks in Operations Research and Managemennt Science, Vol. 10 (A. Ruszczynski and A. A. Shapiro, eds.), Elsevier, Amsterdam 2003, pp. 483-554. | DOI | MR
[23] Salinetti, G., Wets, R. J. B.: On the convergence of closed-valued measurable multifunctions. Trans. Amer. Math. Society 266 (1981), 1, 275-289. | DOI | MR
[24] Schulz, R.: Rates of convergence in stochastic programs with complete integer recourse. SIAM J. Optim. 6 (1996), 4, 1138-1152. | DOI | MR
[25] Shapiro, A.: Quantitative stability in stochastic programming. Math. Program. 67 (1994), 99-108. | DOI | MR | Zbl
[26] Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on Stochastic Programming (Modeling and Theory). Published by Society for Industrial and Applied Mathematics and Mathematical Programming Society, Philadelphia 2009. | DOI | MR | Zbl
[27] Šmíd, M.: The expected loss in the discretization of multistage stochastic programming problems-estimation and convergence rate. Ann. Oper. Res. 165 (2009), 29-45. | DOI | MR
[28] Šmíd, M., Dufek, J.: Multi-period Factor Model of Loan Portfolio (July 10, 2016). | DOI
[29] Shorack, G. R., Wellner, J. A.: Empirical Processes and Applications to Statistics. Wiley, New York 1986. | DOI | MR
[30] Wets, R. J. B.: A Statistical Approach to the Solution of Stochastic Programs with (Convex) Simple Recourse. Research Report, University Kentucky 1974. | MR
Cité par Sources :