Warm-start cuts for Generalized Benders Decomposition
Kybernetika, Tome 53 (2017) no. 6, pp. 1012-1025 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we describe a decomposition algorithm suitable for two-stage convex stochastic programs known as Generalized Benders Decomposition. For this algorithm we propose a new reformulation that incorporates a lower bound cut that serves as a warm-start, decreasing the overall computation time. Additionally, we test the performance of the proposed reformulation on two modifications of the algorithm (bunching and multicut) using numerical examples. The numerical part is programmed in MATLAB and uses state-of-the-art conic solvers.
In this paper, we describe a decomposition algorithm suitable for two-stage convex stochastic programs known as Generalized Benders Decomposition. For this algorithm we propose a new reformulation that incorporates a lower bound cut that serves as a warm-start, decreasing the overall computation time. Additionally, we test the performance of the proposed reformulation on two modifications of the algorithm (bunching and multicut) using numerical examples. The numerical part is programmed in MATLAB and uses state-of-the-art conic solvers.
DOI : 10.14736/kyb-2017-6-1012
Classification : 49M27, 90C15, 90C25
Keywords: stochastic programming; Generalized Benders Decomposition; {\it L}-shaped method; warm–start
@article{10_14736_kyb_2017_6_1012,
     author = {K\r{u}dela, Jakub and Popela, Pavel},
     title = {Warm-start cuts for {Generalized} {Benders} {Decomposition}},
     journal = {Kybernetika},
     pages = {1012--1025},
     year = {2017},
     volume = {53},
     number = {6},
     doi = {10.14736/kyb-2017-6-1012},
     mrnumber = {3758932},
     zbl = {06861638},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-6-1012/}
}
TY  - JOUR
AU  - Kůdela, Jakub
AU  - Popela, Pavel
TI  - Warm-start cuts for Generalized Benders Decomposition
JO  - Kybernetika
PY  - 2017
SP  - 1012
EP  - 1025
VL  - 53
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-6-1012/
DO  - 10.14736/kyb-2017-6-1012
LA  - en
ID  - 10_14736_kyb_2017_6_1012
ER  - 
%0 Journal Article
%A Kůdela, Jakub
%A Popela, Pavel
%T Warm-start cuts for Generalized Benders Decomposition
%J Kybernetika
%D 2017
%P 1012-1025
%V 53
%N 6
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-6-1012/
%R 10.14736/kyb-2017-6-1012
%G en
%F 10_14736_kyb_2017_6_1012
Kůdela, Jakub; Popela, Pavel. Warm-start cuts for Generalized Benders Decomposition. Kybernetika, Tome 53 (2017) no. 6, pp. 1012-1025. doi: 10.14736/kyb-2017-6-1012

[1] Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: Nonlinear Programming: Theory and Algorithms. Third edition. Wiley-Interscience, Hoboken, N. J. 2006. | DOI | MR

[2] Benders, J. F.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4 (1962), 1, 238-252. | DOI | MR | Zbl

[3] Birge, J. R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York 2000. | MR

[4] Boyd, S. P., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York 2004. | DOI | MR | Zbl

[5] Floudas, C. A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University Press, Oxford 1995.

[6] Floudas, C. A., Pardalos, P. M.: Encyclopedia of Optimization. Springer, New York 2009. | DOI | MR

[7] Geoffrion, A. M.: Generalized Benders decomposition. Journal of Optimization Theory and Applications 10 (1972), 4, 237-260. | DOI | MR

[8] Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Recent Advances in Learning and Control (V. Blondel, S. Boyd and H. Kimura, eds.), Springer-Verlag Limited, Berlin 2008, pp. 95-110. | DOI | MR

[9] Madansky, A.: Inequalities for stochastic linear programming problems. Management Science 6 (1960), 197-204. | DOI | MR

[10] Mittelmann, H. D.: The state-of-the-art in conic optimization software. In: Handbook on Semidefinite, Conic and Polynomial Optimization (M. F. Anjos and J. B. Lasserre, eds.), Springer US, New York 2012, pp. 671-686. | DOI | MR

[11] Pflug, G., Maggioni, F.: Bounds and approximations for multistage stochastic programs. SIAM J. Optim. 26 (2016), 1, 831-855. | DOI | MR

[12] Slyke, R. M. Van, Wets, R.: L-Shaped Linear Programs with Applications to Optimal Control and Stochastic Programming. SIAM J. Appl. Math. 17 (1969), 4, 638-663. | DOI | MR

[13] Wolf, C., Fabián, C. I., Koberstein, A., Suhl, L.: Applying oracles of on-demand accuracy in two-stage stochastic programming - A computational study. Europ. J. Oper. Res. 239 (2014), 2, 437-448. | DOI | MR

[14] Zverovich, V., Fabián, C. I., Ellison, E. F. D., Mitra, G.: A computational study of a solver system for processing two-stage stochastic LPs with enhanced Benders decomposition. Math. Program. Computation 4 (2012), 3, 211-238. | DOI | MR

Cité par Sources :