Keywords: multistage risk premium; utility function; portfolio optimization; multistage stochastic programming
@article{10_14736_kyb_2017_6_0992,
author = {Kopa, Milo\v{s} and Petrov\'a, Barbora},
title = {Multistage risk premiums in portfolio optimization},
journal = {Kybernetika},
pages = {992--1011},
year = {2017},
volume = {53},
number = {6},
doi = {10.14736/kyb-2017-6-0992},
mrnumber = {3758931},
zbl = {06861637},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-6-0992/}
}
TY - JOUR AU - Kopa, Miloš AU - Petrová, Barbora TI - Multistage risk premiums in portfolio optimization JO - Kybernetika PY - 2017 SP - 992 EP - 1011 VL - 53 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-6-0992/ DO - 10.14736/kyb-2017-6-0992 LA - en ID - 10_14736_kyb_2017_6_0992 ER -
Kopa, Miloš; Petrová, Barbora. Multistage risk premiums in portfolio optimization. Kybernetika, Tome 53 (2017) no. 6, pp. 992-1011. doi: 10.14736/kyb-2017-6-0992
[1] Ambarish, R., Kallberg, J. G.: Multivariate risk premiums. Theory Decision 22 (1987), 77-96. | DOI | MR
[2] Branda, M., Kopa, M.: Dea models equivalent to general n-th order stochastic dominance efficiency tests. Oper. Res. Lett.44 (2016), 285-289. | DOI | MR
[3] Duncan, G. T.: A matrix measure of multivariate local risk aversion. Econometrica 45 (1977), 895-903. | DOI | MR | Zbl
[4] Dupačová, J., Kopa, M.: Robustness of optimal portfolios under risk and stochastic dominance constraints. Europ. J. Oper. Res. 234 (2014), 2, 434-441. | DOI | MR
[5] Dupačová, J., Hurt, J., Štěpán, J.: Stochastic Modeling in Economics and Finance. Kluwer, 2002. | MR
[6] Høyland, K., Kaut, M., Wallace, S. W.: A heuristic for moment-matching scenario generation. Comput. Optim. Appl. 24 (2003), 2-3, 169-185. | DOI | MR | Zbl
[7] French, K. R.: 6 portfolios formed on size and book-to-market (2 $\times$ 3).
[8] Kihlstrom, R. E., Mirman, L. J.: Risk aversion with many commodities. J. Econom. Theory 8 (1974), 361-388. | DOI | MR
[9] Kopa, M., Moriggia, V., Vitali, S.: Individual optimal pension allocation under stochastic dominance constraints. Ann. Oper. Res. 260 (2018), 1-2, 255-291. | DOI | MR
[10] Post, T., Kopa, M.: Portfolio choice based on third-degree stochastic dominance. Management Sci. 63 (2017), 10, 3381-3392. | DOI
[11] Post, T., Fang, Y., Kopa, M.: Linear tests for decreasing absolute risk aversion stochastic dominance. Management Sci. 61 (2015), 7, 1615-1629. | DOI
[12] Pratt, J. W.: Risk aversion in the small and the large. Econometrica 32 (1064), 122-136. | DOI
[13] Richard, S. F.: Multivariate risk aversion, utility dependence and separable utility functions. Management Sci. 21 (1975), 12-21. | DOI | MR
[14] Rockafellar, R. T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Banking Finance 26 (2002), 1443-1471. | DOI
[15] Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on Stochastic Programming. SIAM, Philadelphia 2009. | DOI | MR
[16] Šmíd, M., Kopa, M.: Dynamic model of market with uninformed market maker. Kybernetika 53 (2017), 5, 922-958. | DOI
[17] Vitali, S., Moriggia, V., Kopa, M.: Optimal pension fund composition for an italian private pension plan sponsor. Comput. Management Sci. 14 (2017), 1, 135-160. | DOI | MR
Cité par Sources :