Keywords: bounded lattice; uninorm; idempotent uninorm; locally internal
@article{10_14736_kyb_2017_5_0911,
author = {\c{C}ayl{\i}, G\"ul Deniz and Ertu\u{g}rul, \"Umit and K\"oro\u{g}lu, Tuncay and Kara\c{c}al, Funda},
title = {Notes on locally internal uninorm on bounded lattices},
journal = {Kybernetika},
pages = {911--921},
year = {2017},
volume = {53},
number = {5},
doi = {10.14736/kyb-2017-5-0911},
mrnumber = {3750111},
zbl = {06861632},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0911/}
}
TY - JOUR AU - Çaylı, Gül Deniz AU - Ertuğrul, Ümit AU - Köroğlu, Tuncay AU - Karaçal, Funda TI - Notes on locally internal uninorm on bounded lattices JO - Kybernetika PY - 2017 SP - 911 EP - 921 VL - 53 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0911/ DO - 10.14736/kyb-2017-5-0911 LA - en ID - 10_14736_kyb_2017_5_0911 ER -
%0 Journal Article %A Çaylı, Gül Deniz %A Ertuğrul, Ümit %A Köroğlu, Tuncay %A Karaçal, Funda %T Notes on locally internal uninorm on bounded lattices %J Kybernetika %D 2017 %P 911-921 %V 53 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0911/ %R 10.14736/kyb-2017-5-0911 %G en %F 10_14736_kyb_2017_5_0911
Çaylı, Gül Deniz; Ertuğrul, Ümit; Köroğlu, Tuncay; Karaçal, Funda. Notes on locally internal uninorm on bounded lattices. Kybernetika, Tome 53 (2017) no. 5, pp. 911-921. doi: 10.14736/kyb-2017-5-0911
[1] Aşıcı, E., Karaçal, F.: Incomparability with respect to the triangular order. Kybernetika 52 (2016), 15-27. | DOI | MR
[2] Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publ., Providence 1967. | DOI | MR | Zbl
[3] Baets, B. De: Idempotent uninorms. European J. Oper. Res. 118 (1999), 631-642. | DOI | Zbl
[4] Baets, B. De, Fodor, J.: A single-point characterization of representable uninorms. Fuzzy Sets Syst. 202 (2012), 89-99. | DOI | MR
[5] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inform. Sci. 367-368 (2016), 221-231. | DOI | MR
[6] Çaylı, G. D., Drygaś, P.: Some properties of idempotent uninorms on bounded lattices. Inform. Sci. 422 (2018), 352-363. | DOI | MR
[7] Drewniak, J., Drygaś, P.: On a class of uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10 (2002), 5-10. | DOI | MR
[8] Drygaś, P.: On properties of uninorms with underlying t-norm and t-conorm given as ordinal sums. Fuzzy Sets Syst. 161 (2010), 149-157. | DOI | MR | Zbl
[9] Drygaś, P., Ruiz-Aguilera, D., Torrens, J.: A characterization of uninorms locally internal in $A(e)$ with continuous underlying operators. Fuzzy Sets Syst. 287 (2016), 137-153. | DOI | MR
[10] Ertuğrul, Ü., Kesicioğlu, M. N., Karaçal, F.: Ordering based on uninorms. Inform. Sci. 330 (2016), 315-327. | DOI
[11] Fodor, J., Yager, R. R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain Fuzziness Knowl.-Based Syst. 5 (1997), 411-427. | DOI | MR | Zbl
[12] Kesicioğlu, M. N., Mesiar, R.: Ordering based on implications. Fuzzy Sets Syst. 276 (2014), 377-386. | DOI | MR
[13] Kesicioğlu, M. N., Ertuğrul, Ü., Karaçal, F.: An equivalence relation based on the U-partial order. Inform. Sci. 411 (2017), 39-51. | DOI | MR
[14] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43. | DOI | MR
[15] Karaçal, F., Ertuğrul, Ü., Mesiar, R.: Characterization of uninorms on bounded lattices. Fuzzy Sets Syst. 308 (2017), 54-71. | DOI | MR
[16] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Dordrecht, Kluwer Acad. Publ., 2000. | DOI | MR | Zbl
[17] Martin, J., Mayor, G., Torrens, J.: On locally internal monotonic operations. Fuzzy Sets Syst. 137 (2003), 27-42. | DOI | MR | Zbl
[18] Mesiarová-Zemánková, A.: Multi-polar t-conorms and uninorms. Inform. Sci. 301 (2015), 227-240. | DOI | MR
[19] Yager, R. R.: Uninorms in fuzzy system modeling. Fuzzy Sets Syst. 122 (2001), 167-175. | DOI | MR
[20] Yager, R. R.: Defending against strategic manipulation in uninorm-based multi-agent decision making. European J. Oper. Res. 141 (2002), 217-232. | DOI | MR | Zbl
[21] Yager, R. R., Rybalov, A.: Uninorms aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120. | DOI | MR
Cité par Sources :