Keywords: lattice-valued algebra; congruence; homomorphism
@article{10_14736_kyb_2017_5_0892,
author = {Eghosa Edeghagba, Elijah and \v{S}e\v{s}elja, Branimir and Tepav\v{c}evi\'c, Andreja},
title = {Congruences and homomorphisms on $\Omega $-algebras},
journal = {Kybernetika},
pages = {892--910},
year = {2017},
volume = {53},
number = {5},
doi = {10.14736/kyb-2017-5-0892},
mrnumber = {3750110},
zbl = {06861631},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0892/}
}
TY - JOUR AU - Eghosa Edeghagba, Elijah AU - Šešelja, Branimir AU - Tepavčević, Andreja TI - Congruences and homomorphisms on $\Omega $-algebras JO - Kybernetika PY - 2017 SP - 892 EP - 910 VL - 53 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0892/ DO - 10.14736/kyb-2017-5-0892 LA - en ID - 10_14736_kyb_2017_5_0892 ER -
%0 Journal Article %A Eghosa Edeghagba, Elijah %A Šešelja, Branimir %A Tepavčević, Andreja %T Congruences and homomorphisms on $\Omega $-algebras %J Kybernetika %D 2017 %P 892-910 %V 53 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0892/ %R 10.14736/kyb-2017-5-0892 %G en %F 10_14736_kyb_2017_5_0892
Eghosa Edeghagba, Elijah; Šešelja, Branimir; Tepavčević, Andreja. Congruences and homomorphisms on $\Omega $-algebras. Kybernetika, Tome 53 (2017) no. 5, pp. 892-910. doi: 10.14736/kyb-2017-5-0892
[1] Ajmal, N., Thomas, K. V.: Fuzzy lattices. Inform. Sci. 79 (1994), 271-291. | DOI | MR
[2] Bělohlávek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic/Plenum Publishers, New York 2002. | DOI
[3] Bělohlávek, R., Vychodil, V.: Algebras with fuzzy equalities. Fuzzy Sets and Systems 157 (2006), 161-201. | DOI | MR
[4] Bělohlávek, R., Vychodil, V.: Fuzzy Equational Logic. Studies in Fuzziness and Soft Computing, Springer 186 (2005), pp. 139-170. | DOI
[5] Budimirović, B., Budimirović, V., Šešelja, B., Tepavčević, A.: Fuzzy identities with application to fuzzy semigroups. Inform. Sci. 266 (2014), 148-159. | DOI | MR
[6] Budimirović, B., Budimirović, V., Šešelja, B., Tepavčević, A.: Fuzzy equational classes are fuzzy varieties. Iranian J. Fuzzy Systems 10 (2013), 1-18. | MR
[7] Budimirović, B., Budimirović, V., Šešelja, B., Tepavčević, A.: Fuzzy equational classes. In: Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference, pp. 1-6. | DOI | MR
[8] Budimirović, B., Budimirović, V., Šešelja, B., Tepavčević, A.: $E$-fuzzy groups. Fuzzy Sets and Systems 289 (2016), 94-112. | DOI | MR
[9] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra. Grauate Texts in Mathematics, 1981. | DOI | MR | Zbl
[10] Czédli, G., Erné, M., Šešelja, B., Tepavčević, A.: Characteristic triangles of closure operators with applications in general algebra. Algebra Univers. 62 (2009), 399-418. | DOI | MR
[11] Demirci, M.: Foundations of fuzzy functions and vague algebra based on many-valued equivalence relations. Part I: Fuzzy functions and their applications. Part II: Vague algebraic notions. Part III: Constructions of vague algebraic notions and vague arithmetic operations. Int. J. General Systems 32 (2003), 3, 123-155, 157-175, 177-201. | DOI | MR
[12] Demirci, M.: A theory of vague lattices based on many-valued equivalence relations I: general representation results. Fuzzy Sets and Systems 151 (2005), 437-472. | DOI | MR
[13] Demirci, M.: A theory of vague lattices based on many-valued equivalence relations II: Complete lattices. Fuzzy Sets and Systems 151 (2005), 473-489. | DOI | MR
[14] Nola, A. Di, Gerla, G.: Lattice valued algebras. Stochastica 11 (1987), 137-150. | MR
[15] Edeghagba, E. E., Šešelja, B., Tepavčević, A.: Omega-Lattices. Fuzzy Sets and Systems 311 (2017), 53-69. | DOI | MR
[16] Fourman, M. P., Scott, D. S.: Sheaves and logic. In: Applications of Sheaves (M. P. Fourman, C. J. Mulvey and D. S. Scott, eds.), Lecture Notes in Mathematics, 753, Springer, Berlin, Heidelberg, New York 1979, pp. 302-401. | DOI | MR
[17] Goguen, J. A.: $L$-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 145-174. | DOI | MR | Zbl
[18] Gottwald, S.: Universes of fuzzy sets and axiomatizations of fuzzy set theory. Part II: Category theoretic approaches. Studia Logica 84 (2006) 1, 23-50, 1143-1174. | DOI | MR
[19] Höhle, U.: Quotients with respect to similarity relations. Fuzzy Sets and Systems 27 (1988), 31-44. | DOI | MR
[20] Höhle, U.: Fuzzy sets and sheaves. Part I: Basic concepts. Fuzzy Sets and Systems 158 (2007), 11, 1143-1174. | DOI | MR
[21] Höhle, U., Šostak, A. P.: Axiomatic foundations of fixed-basis fuzzy topology. Springer US, 1999, pp. 123-272. | DOI | MR
[22] Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey 1995. | MR
[23] Šešelja, B., Tepavčević, A.: On Generalizations of fuzzy algebras and congruences. Fuzzy Sets and Systems 65 (1994), 85-94. | DOI | MR
[24] Šešelja, B., Tepavčević, A.: Fuzzy identities. In: Proc. 2009 IEEE International Conference on Fuzzy Systems, pp. 1660-1664. | DOI
Cité par Sources :