Stabilization of nonlinear systems with varying parameter by a control Lyapunov function
Kybernetika, Tome 53 (2017) no. 5, pp. 853-867
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we provide an explicit homogeneous feedback control with the requirement that a control Lyapunov function exists for affine in control systems with bounded parameter that satisfies an homogeneous condition. We use a modified version of the Sontag's formula to achieve our main goal. Moreover, we prove that the existence of an homogeneous control Lyapunov function for an homogeneous system leads to an homogeneous closed-loop system which is asymptotically stable by an homogeneous feedback control. In addition, we study the finite time stability for affine in control systems with varying parameter.
In this paper, we provide an explicit homogeneous feedback control with the requirement that a control Lyapunov function exists for affine in control systems with bounded parameter that satisfies an homogeneous condition. We use a modified version of the Sontag's formula to achieve our main goal. Moreover, we prove that the existence of an homogeneous control Lyapunov function for an homogeneous system leads to an homogeneous closed-loop system which is asymptotically stable by an homogeneous feedback control. In addition, we study the finite time stability for affine in control systems with varying parameter.
DOI : 10.14736/kyb-2017-5-0853
Classification : 93D05, 93D15
Keywords: feedback stabilization; homogeneous system; nonlinear control systems; Lyapunov function; finite time stability
@article{10_14736_kyb_2017_5_0853,
     author = {Kallel, Wajdi and Kharrat, Thouraya},
     title = {Stabilization of nonlinear systems with varying parameter by a control {Lyapunov} function},
     journal = {Kybernetika},
     pages = {853--867},
     year = {2017},
     volume = {53},
     number = {5},
     doi = {10.14736/kyb-2017-5-0853},
     mrnumber = {3750107},
     zbl = {06861628},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0853/}
}
TY  - JOUR
AU  - Kallel, Wajdi
AU  - Kharrat, Thouraya
TI  - Stabilization of nonlinear systems with varying parameter by a control Lyapunov function
JO  - Kybernetika
PY  - 2017
SP  - 853
EP  - 867
VL  - 53
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0853/
DO  - 10.14736/kyb-2017-5-0853
LA  - en
ID  - 10_14736_kyb_2017_5_0853
ER  - 
%0 Journal Article
%A Kallel, Wajdi
%A Kharrat, Thouraya
%T Stabilization of nonlinear systems with varying parameter by a control Lyapunov function
%J Kybernetika
%D 2017
%P 853-867
%V 53
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0853/
%R 10.14736/kyb-2017-5-0853
%G en
%F 10_14736_kyb_2017_5_0853
Kallel, Wajdi; Kharrat, Thouraya. Stabilization of nonlinear systems with varying parameter by a control Lyapunov function. Kybernetika, Tome 53 (2017) no. 5, pp. 853-867. doi: 10.14736/kyb-2017-5-0853

[1] Artstein, Z.: Stabilization with relaxed controls. Nonlinear Anal. TMA 7 (1983), 1163-1173. | DOI | MR | Zbl

[2] Bhat, S. P., Bernstein, D. S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Automat. Control 43 (1998), 678-682. | DOI | MR | Zbl

[3] Cai, X. S., Han, Z. Z., Zhang, W.: Simultaneous stabilization for a collection of multi-input nonlinear systems with uncertain parameters. Acta Automat. Sinica 35 (2009), 206-209. | DOI | MR

[4] Čelikovský, S., Aranda-Bricaire, E.: Constructive nonsmooth stabilization of triangular systems. Systems Control Lett. 36 (1999), 21-37. | DOI | MR

[5] Huang, J., Yu, L., Xia, S.: Stabilization and finite time stabilization of nonlinear differential inclusions based on control Lyapunov function. Circuits Systems Signal Process. 33 (2015), 2319-2331. | DOI | MR

[6] Hong, Y., Wang, J., Cheng, D.: Adaptive finite-time control of nonlinear systems with parametric uncertainty. IEEE Trans. Automat. Control 51 (2006), 858-862. | DOI | MR

[7] Jerbi, H.: A manifold-like characterization of asymptotic stabilizability of homogeneous systems. Systems Control Lett. 41 (2002), 173-178. | DOI | MR

[8] Jerbi, H., Kallel, W., Kharrat, T.: On the stabilization of homogeneous perturbed systems. J. Dynamical Control Syst. 14 (2008), 595-606. | DOI | MR

[9] Jerbi, H., Kharrat, T.: Only a level set of a control Lyapunov function for homogeneous systems. Kybernetika 41 (2005), 593-600. | MR

[10] Krstic, M., Kokotovic, P. V.: Control Lyapunov function for adaptive nonlinear stabilization. Systems Control Lett. 26 (1995), 17-23. | DOI | MR

[11] Massera, J. L.: Contributions to stability theory. Ann. Math. 64 (1956), 182-206. | DOI | MR

[12] Moulay, E.: Stabilization via homogeneous feedback controls. Automatica 44 (2008), 2981-2984. | DOI | MR

[13] Moulay, E., Perruquetti, W.: Finite time stability and stabilization of a class of continuous systems. J. Math. Anal. Appl. 323 (2006), 1430-1443. | DOI | MR | Zbl

[14] Rosier, L.: Homogeneous Lyapunov function for homogeneous continuous vector field. Systems Control Lett. 19 (1992), 467-473. | DOI | MR | Zbl

[15] Sepulchre, R., Aeyels, D.: Homogeneous Lyapunov functions and necessary conditions for stabilization. Math. Control Signals Syst. 9 (1996), 34-58. | DOI | MR

[16] Shafiei, M. H., Yazdanpanah, M. J.: Stabilization of nonlinear systems with a slowly varying parameter by a control Lyapunov function. ISA Trans. 49 (2010), 215-221. | DOI

[17] Sontag, E. D.: A "universal" construction of Artstein's Theorem on nonlinear stabilization. Systems Control Lett. 13 (1989), 117-123. | DOI | MR

[18] Sontag, E. D.: A Lyapunov-like caharacterization of asymptotic controlability. SIAM J. Control Optim. 21 (1983), 462-471. | DOI | MR

[19] Tsinias, J.: Stabilization of affine in control nonlinear systems. Nonlinear Anal. TMA 12 (1988), 1283-1296. | DOI | MR | Zbl

[20] Tsinias, J.: Sufficient Lyapunov like conditions for stabilization. Math. Control Signals Syst. 2 (1989), 343-357. | DOI | MR | Zbl

[21] Zhang, W., Su, H., Cai, X., Guo, H.: A control Lyapunov approach to stabilization of affine nonlinear systems with bounded uncertain parameters. Circuits Systems Signal Process. 34 (2015), 341-352. | DOI | MR

[22] Wang, H., Han, Z., Zhang, W., Xie, Q.: Synchronization of unified chaotic systems with uncertain parameters based on the CLF. Nonlinear Analysis: Real World Appl. 10 (2009), 2842-2849. | DOI | MR

[23] Wang, H., Han, Z., Zhang, W., Xie, Q.: Chaos control and synchronization of unified chaotic systems via linear control. J. Sound Vibration 320 (2009), 365-372. | DOI | MR

Cité par Sources :