Keywords: feedback stabilization; homogeneous system; nonlinear control systems; Lyapunov function; finite time stability
@article{10_14736_kyb_2017_5_0853,
author = {Kallel, Wajdi and Kharrat, Thouraya},
title = {Stabilization of nonlinear systems with varying parameter by a control {Lyapunov} function},
journal = {Kybernetika},
pages = {853--867},
year = {2017},
volume = {53},
number = {5},
doi = {10.14736/kyb-2017-5-0853},
mrnumber = {3750107},
zbl = {06861628},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0853/}
}
TY - JOUR AU - Kallel, Wajdi AU - Kharrat, Thouraya TI - Stabilization of nonlinear systems with varying parameter by a control Lyapunov function JO - Kybernetika PY - 2017 SP - 853 EP - 867 VL - 53 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0853/ DO - 10.14736/kyb-2017-5-0853 LA - en ID - 10_14736_kyb_2017_5_0853 ER -
%0 Journal Article %A Kallel, Wajdi %A Kharrat, Thouraya %T Stabilization of nonlinear systems with varying parameter by a control Lyapunov function %J Kybernetika %D 2017 %P 853-867 %V 53 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0853/ %R 10.14736/kyb-2017-5-0853 %G en %F 10_14736_kyb_2017_5_0853
Kallel, Wajdi; Kharrat, Thouraya. Stabilization of nonlinear systems with varying parameter by a control Lyapunov function. Kybernetika, Tome 53 (2017) no. 5, pp. 853-867. doi: 10.14736/kyb-2017-5-0853
[1] Artstein, Z.: Stabilization with relaxed controls. Nonlinear Anal. TMA 7 (1983), 1163-1173. | DOI | MR | Zbl
[2] Bhat, S. P., Bernstein, D. S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Automat. Control 43 (1998), 678-682. | DOI | MR | Zbl
[3] Cai, X. S., Han, Z. Z., Zhang, W.: Simultaneous stabilization for a collection of multi-input nonlinear systems with uncertain parameters. Acta Automat. Sinica 35 (2009), 206-209. | DOI | MR
[4] Čelikovský, S., Aranda-Bricaire, E.: Constructive nonsmooth stabilization of triangular systems. Systems Control Lett. 36 (1999), 21-37. | DOI | MR
[5] Huang, J., Yu, L., Xia, S.: Stabilization and finite time stabilization of nonlinear differential inclusions based on control Lyapunov function. Circuits Systems Signal Process. 33 (2015), 2319-2331. | DOI | MR
[6] Hong, Y., Wang, J., Cheng, D.: Adaptive finite-time control of nonlinear systems with parametric uncertainty. IEEE Trans. Automat. Control 51 (2006), 858-862. | DOI | MR
[7] Jerbi, H.: A manifold-like characterization of asymptotic stabilizability of homogeneous systems. Systems Control Lett. 41 (2002), 173-178. | DOI | MR
[8] Jerbi, H., Kallel, W., Kharrat, T.: On the stabilization of homogeneous perturbed systems. J. Dynamical Control Syst. 14 (2008), 595-606. | DOI | MR
[9] Jerbi, H., Kharrat, T.: Only a level set of a control Lyapunov function for homogeneous systems. Kybernetika 41 (2005), 593-600. | MR
[10] Krstic, M., Kokotovic, P. V.: Control Lyapunov function for adaptive nonlinear stabilization. Systems Control Lett. 26 (1995), 17-23. | DOI | MR
[11] Massera, J. L.: Contributions to stability theory. Ann. Math. 64 (1956), 182-206. | DOI | MR
[12] Moulay, E.: Stabilization via homogeneous feedback controls. Automatica 44 (2008), 2981-2984. | DOI | MR
[13] Moulay, E., Perruquetti, W.: Finite time stability and stabilization of a class of continuous systems. J. Math. Anal. Appl. 323 (2006), 1430-1443. | DOI | MR | Zbl
[14] Rosier, L.: Homogeneous Lyapunov function for homogeneous continuous vector field. Systems Control Lett. 19 (1992), 467-473. | DOI | MR | Zbl
[15] Sepulchre, R., Aeyels, D.: Homogeneous Lyapunov functions and necessary conditions for stabilization. Math. Control Signals Syst. 9 (1996), 34-58. | DOI | MR
[16] Shafiei, M. H., Yazdanpanah, M. J.: Stabilization of nonlinear systems with a slowly varying parameter by a control Lyapunov function. ISA Trans. 49 (2010), 215-221. | DOI
[17] Sontag, E. D.: A "universal" construction of Artstein's Theorem on nonlinear stabilization. Systems Control Lett. 13 (1989), 117-123. | DOI | MR
[18] Sontag, E. D.: A Lyapunov-like caharacterization of asymptotic controlability. SIAM J. Control Optim. 21 (1983), 462-471. | DOI | MR
[19] Tsinias, J.: Stabilization of affine in control nonlinear systems. Nonlinear Anal. TMA 12 (1988), 1283-1296. | DOI | MR | Zbl
[20] Tsinias, J.: Sufficient Lyapunov like conditions for stabilization. Math. Control Signals Syst. 2 (1989), 343-357. | DOI | MR | Zbl
[21] Zhang, W., Su, H., Cai, X., Guo, H.: A control Lyapunov approach to stabilization of affine nonlinear systems with bounded uncertain parameters. Circuits Systems Signal Process. 34 (2015), 341-352. | DOI | MR
[22] Wang, H., Han, Z., Zhang, W., Xie, Q.: Synchronization of unified chaotic systems with uncertain parameters based on the CLF. Nonlinear Analysis: Real World Appl. 10 (2009), 2842-2849. | DOI | MR
[23] Wang, H., Han, Z., Zhang, W., Xie, Q.: Chaos control and synchronization of unified chaotic systems via linear control. J. Sound Vibration 320 (2009), 365-372. | DOI | MR
Cité par Sources :