Keywords: finite-time synchronization; different dimensional chaotic systems; adaptive control; noise perturbation
@article{10_14736_kyb_2017_5_0838,
author = {Ma, Zhi-cai and Wu, Jie and Sun, Yong-zheng},
title = {Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation},
journal = {Kybernetika},
pages = {838--852},
year = {2017},
volume = {53},
number = {5},
doi = {10.14736/kyb-2017-5-0838},
mrnumber = {3750106},
zbl = {06861627},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0838/}
}
TY - JOUR AU - Ma, Zhi-cai AU - Wu, Jie AU - Sun, Yong-zheng TI - Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation JO - Kybernetika PY - 2017 SP - 838 EP - 852 VL - 53 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0838/ DO - 10.14736/kyb-2017-5-0838 LA - en ID - 10_14736_kyb_2017_5_0838 ER -
%0 Journal Article %A Ma, Zhi-cai %A Wu, Jie %A Sun, Yong-zheng %T Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation %J Kybernetika %D 2017 %P 838-852 %V 53 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0838/ %R 10.14736/kyb-2017-5-0838 %G en %F 10_14736_kyb_2017_5_0838
Ma, Zhi-cai; Wu, Jie; Sun, Yong-zheng. Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation. Kybernetika, Tome 53 (2017) no. 5, pp. 838-852. doi: 10.14736/kyb-2017-5-0838
[1] Aghababa, M. P.: Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dynam. 69 (2012), 247-261. | DOI | MR
[2] Aghababa, M. P., Aghababa, H. P.: A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs. Nonlinear Dynam. 69 (2012), 1903-1914. | DOI | MR | Zbl
[3] Ahmad, I., Saaban, A. B., Ibrahima, A. B., Shahzadb, M., Naveedca, N.: The synchronization of chaotic systems with different dimensionals by a robust generalized active control. Optik 127 (2016), 4859-4871. | DOI
[4] Ahmada, I., Shafiq, M., Saaban, A. B., Ibrahim, A. B., Shahzad, M.: Robust finite-time global synchronization of chaotic systemswith different orders. Optik 127 (2016), 8172-8185. | DOI
[5] Bhat, S. P., Bernstein, D. S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38 (2000), 751-766. | DOI | MR | Zbl
[6] Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., Zhou, C. S.: The synchronization of chaotic systems. Phys. Rep. 366 (2002), 1-101. | DOI | MR | Zbl
[7] Bowong, S., Kakmeni, M., Koina, R.: Chaos synchronization and duration time of a class of uncertain chaotic systems. Math. Comput. Simulat. 71 (2006), 212-228. | DOI | MR
[8] Cai, N., Li, W. Q., Jing, Y. W.: Finite-time generalized synchronization of chaotic systems with different order. Nonlinear Dynam. 64 (2011), 385-393. | DOI | MR
[9] Chen, X. Y., Lu, J. F.: Adaptive synchronization of different chaotic systems with fully unknown parameters. Phys. Lett. A 364 (2007), 123-128. | DOI
[10] Chen, D. Y., Zhang, R. F., Ma, X. Y., Liu, S.: Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme. Nonlinear Dynam. 69 (2012), 35-55. | DOI | MR
[11] Erban, R., Haskovec, J., Sun, Y.: A Cucker-Smale model with noise and delay. SIAM J. Appl. Math. 76 (2016), 1535-1557. | DOI | MR
[12] Ge, Z. M., Yang, C. H.: The generalized synchronization of a Quantum-CNN chaotic oscillator with different order systems. Chaos Solitons and Fractals 35 (2008), 980-990. | DOI
[13] Ge, X. H., Yang, F. W., Han, Q. L.: Distributed networked control systems: A brief overview. Inform. Sciences 380 (2017), 117-131. | DOI
[14] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities. Cambridge At The University Press, Cambridge 1934. | MR | Zbl
[15] Hauschildt, B., Jason, N. B., Balanov, A., Scholl, A.: Noise-induced cooperative dynamics and its control in coupled neuron models. Phys. Rev. E 74 (2006), 051906. | DOI | MR
[16] He, W. L., Chen, G. R., Han, Q. L., Qian, F.: Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control. Inform. Sciences 380 (2017), 145-158. | DOI
[17] He, W. L., Qian, F., Lam, J., Chen, G. R., Han, Q. L., Kurths, J.: Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: Error estimation, optimization and design. Automatica 62 (2015), 249-262. | DOI | MR
[18] He, W. L., Zhang, B., Han, Q. L., Qian, F., Kurths, J., Cao, J. D.: Leader-following consensus of nonlinear multiagent systems with stochastic sampling. IEEE Trans. Cybern. 47 (2017), 327-338.
[19] Huang, D. B.: Simple adaptive-feedback controller for identical chaos synchronization. Phys. Rev. E. 71 (2005), 037203. | DOI
[20] Ke, D., Han, Q. L.: Synchronization of two coupled Hindmarsh-Rose neurons. Kybernetika 51 (2015), 784-799. | DOI | MR
[21] Ke, D., Han, Q. L.: Master-Slave synchronization criteria for chaotic Hindmarsh-Rose neurons using linear feedback control. Complexity 21 (2016), 319-327. | DOI | MR
[22] Korniss, G.: Synchronization in weighted unccorrelated complex networks in a noisy environment: optimization and connections with transport efficiency. Phys. Rev. E 75 (2007), 051121. | DOI
[23] Li, S. H., Tian, Y. P.: Finite-time synchronization of chaotic systems. Chaos Solitons and Fractals 15 (2003), 303-310. | DOI | MR
[24] Lin, W., Chen, G. R.: Using white noise to enhance synchronization of coupled chaotic systems. Chaos 16 (2006), 013134. | DOI | MR | Zbl
[25] Lin, J. S., Yan, J. J.: Adaptive synchronization for two identical generalized Lorenz chaotic systems via a single controller. Nonlinear Anal. RWA 10 (2009), 1151-1159. | DOI | MR | Zbl
[26] Ouannas, A., Odibat, Z.: Generalized synchronization of different dimensional chaotic dynamical systems in discrete time. Nonlinear Dynam. 81 (2015), 765-771. | DOI | MR
[27] Pecora, L. M., Carroll, T. L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 821-824. | DOI | MR | Zbl
[28] Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge 2001. | DOI | MR
[29] Pourmahmood, M., Khanmohammadi, S., Alizadeh, G.: Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller. Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), 2853-2868. | DOI | MR | Zbl
[30] Stefanovska, A., Haken, H., McClintock, E., Hožič, M., Bajrović, F., Ribarič, S.: Reversible transitions between synchronization states of the cardiorespiratory system. Phys. Rev. Lett. 85 (2000), 4831-4834. | DOI
[31] Sun, Y. Z., Li, W., Zhao, D. H.: Finite-time stochastic outer synchronization between two complex dynamical networks with different topologies. Chaos 22 (2012), 023152. | DOI | MR
[32] Sun, Y. Z., Ruan, J.: Synchronization in coupled time-delayed systems with parameter mismath and noise perturbation. Chaos 19 (2009), 043113. | DOI
[33] Sun, Y. Z., Shi, H. J., Bakare, E. A., Meng, Q. X.: Noise-induced outer synchronization between two different complex dynamical networks. Nonlinear Dynam. 76 (2014), 519-528. | DOI | MR | Zbl
[34] Vincent, U. E., Guo, R.: Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller. Phys. Lett. A 375 (2011), 2322-2326. | DOI | Zbl
[35] Wang, H., Han, Z. Z., Zhang, W.: Finite-time chaos control of unified chaotic systems with uncertain parameters. Nonlinear Dynam. 55 (2009), 323-328. | DOI | MR
[36] Wu, J., Ma, Z. C., Sun, Y. Z., Liu, F.: Finite-time synchronization of chaotic systems with noise perturbation. Kybernetika 54 (2015), 137-149. | DOI | MR
[37] Yan, J. J., Hung, M. L., Chang, T. Y., Yang, Y. S.: Robust synchronization of chaotic systems via adaptive sliding mode control. Phys. Lett. A 356 (2006), 220-225. | DOI
[38] Yang, Y. Q., Wu, X. F.: Global finite-time synchronization of a class of the non-autonomous chaotic systems. Nonlinear Dynam. 70 (2012), 197-208. | DOI | MR | Zbl
[39] Yin, J. L., Khoo, S., Man, Z. H., Yu, X. H.: Finite-time stability and instability of stochastic nonlinear systems. Automatica 47 (2011), 2671-2677. | DOI | MR | Zbl
[40] Zhang, X. M., Han, Q. L., Yu, X. H.: Survey on recent advances in networked control systems. IEEE Trans. Ind. Informat. 12 (2016), 1740-1752. | DOI
[41] Zhang, G., Liu, Z. R., Ma, Z. J.: Generalized synchronization of different dimensional chaotic dynamical systems. Chaos Solitons and Fractals 32 (2007), 773-779. | DOI | MR
[42] Zhou, X. B., Jiang, M. R., Huang, Y. Q.: Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification. Kybernetika 50 (2014), 632-642. | DOI | MR | Zbl
Cité par Sources :