Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation
Kybernetika, Tome 53 (2017) no. 5, pp. 838-852
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is further concerned with the finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation via an adaptive controller. First of all, we introduce the definition of finite-time generalized outer synchronization between two different dimensional chaotic systems. Then, employing the finite-time stability theory, we design an adaptive feedback controller to realize the generalized outer synchronization between two different dimensional chaotic systems within a finite time. Moreover, we analyze the influence of control parameter on the synchronous speed. Finally, two typical examples are examined to illustrate the effectiveness and feasibility of the theoretical result.
This paper is further concerned with the finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation via an adaptive controller. First of all, we introduce the definition of finite-time generalized outer synchronization between two different dimensional chaotic systems. Then, employing the finite-time stability theory, we design an adaptive feedback controller to realize the generalized outer synchronization between two different dimensional chaotic systems within a finite time. Moreover, we analyze the influence of control parameter on the synchronous speed. Finally, two typical examples are examined to illustrate the effectiveness and feasibility of the theoretical result.
DOI : 10.14736/kyb-2017-5-0838
Classification : 65L99, 70K99
Keywords: finite-time synchronization; different dimensional chaotic systems; adaptive control; noise perturbation
@article{10_14736_kyb_2017_5_0838,
     author = {Ma, Zhi-cai and Wu, Jie and Sun, Yong-zheng},
     title = {Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation},
     journal = {Kybernetika},
     pages = {838--852},
     year = {2017},
     volume = {53},
     number = {5},
     doi = {10.14736/kyb-2017-5-0838},
     mrnumber = {3750106},
     zbl = {06861627},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0838/}
}
TY  - JOUR
AU  - Ma, Zhi-cai
AU  - Wu, Jie
AU  - Sun, Yong-zheng
TI  - Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation
JO  - Kybernetika
PY  - 2017
SP  - 838
EP  - 852
VL  - 53
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0838/
DO  - 10.14736/kyb-2017-5-0838
LA  - en
ID  - 10_14736_kyb_2017_5_0838
ER  - 
%0 Journal Article
%A Ma, Zhi-cai
%A Wu, Jie
%A Sun, Yong-zheng
%T Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation
%J Kybernetika
%D 2017
%P 838-852
%V 53
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0838/
%R 10.14736/kyb-2017-5-0838
%G en
%F 10_14736_kyb_2017_5_0838
Ma, Zhi-cai; Wu, Jie; Sun, Yong-zheng. Adaptive finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation. Kybernetika, Tome 53 (2017) no. 5, pp. 838-852. doi: 10.14736/kyb-2017-5-0838

[1] Aghababa, M. P.: Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dynam. 69 (2012), 247-261. | DOI | MR

[2] Aghababa, M. P., Aghababa, H. P.: A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs. Nonlinear Dynam. 69 (2012), 1903-1914. | DOI | MR | Zbl

[3] Ahmad, I., Saaban, A. B., Ibrahima, A. B., Shahzadb, M., Naveedca, N.: The synchronization of chaotic systems with different dimensionals by a robust generalized active control. Optik 127 (2016), 4859-4871. | DOI

[4] Ahmada, I., Shafiq, M., Saaban, A. B., Ibrahim, A. B., Shahzad, M.: Robust finite-time global synchronization of chaotic systemswith different orders. Optik 127 (2016), 8172-8185. | DOI

[5] Bhat, S. P., Bernstein, D. S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38 (2000), 751-766. | DOI | MR | Zbl

[6] Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., Zhou, C. S.: The synchronization of chaotic systems. Phys. Rep. 366 (2002), 1-101. | DOI | MR | Zbl

[7] Bowong, S., Kakmeni, M., Koina, R.: Chaos synchronization and duration time of a class of uncertain chaotic systems. Math. Comput. Simulat. 71 (2006), 212-228. | DOI | MR

[8] Cai, N., Li, W. Q., Jing, Y. W.: Finite-time generalized synchronization of chaotic systems with different order. Nonlinear Dynam. 64 (2011), 385-393. | DOI | MR

[9] Chen, X. Y., Lu, J. F.: Adaptive synchronization of different chaotic systems with fully unknown parameters. Phys. Lett. A 364 (2007), 123-128. | DOI

[10] Chen, D. Y., Zhang, R. F., Ma, X. Y., Liu, S.: Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme. Nonlinear Dynam. 69 (2012), 35-55. | DOI | MR

[11] Erban, R., Haskovec, J., Sun, Y.: A Cucker-Smale model with noise and delay. SIAM J. Appl. Math. 76 (2016), 1535-1557. | DOI | MR

[12] Ge, Z. M., Yang, C. H.: The generalized synchronization of a Quantum-CNN chaotic oscillator with different order systems. Chaos Solitons and Fractals 35 (2008), 980-990. | DOI

[13] Ge, X. H., Yang, F. W., Han, Q. L.: Distributed networked control systems: A brief overview. Inform. Sciences 380 (2017), 117-131. | DOI

[14] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities. Cambridge At The University Press, Cambridge 1934. | MR | Zbl

[15] Hauschildt, B., Jason, N. B., Balanov, A., Scholl, A.: Noise-induced cooperative dynamics and its control in coupled neuron models. Phys. Rev. E 74 (2006), 051906. | DOI | MR

[16] He, W. L., Chen, G. R., Han, Q. L., Qian, F.: Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control. Inform. Sciences 380 (2017), 145-158. | DOI

[17] He, W. L., Qian, F., Lam, J., Chen, G. R., Han, Q. L., Kurths, J.: Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: Error estimation, optimization and design. Automatica 62 (2015), 249-262. | DOI | MR

[18] He, W. L., Zhang, B., Han, Q. L., Qian, F., Kurths, J., Cao, J. D.: Leader-following consensus of nonlinear multiagent systems with stochastic sampling. IEEE Trans. Cybern. 47 (2017), 327-338.

[19] Huang, D. B.: Simple adaptive-feedback controller for identical chaos synchronization. Phys. Rev. E. 71 (2005), 037203. | DOI

[20] Ke, D., Han, Q. L.: Synchronization of two coupled Hindmarsh-Rose neurons. Kybernetika 51 (2015), 784-799. | DOI | MR

[21] Ke, D., Han, Q. L.: Master-Slave synchronization criteria for chaotic Hindmarsh-Rose neurons using linear feedback control. Complexity 21 (2016), 319-327. | DOI | MR

[22] Korniss, G.: Synchronization in weighted unccorrelated complex networks in a noisy environment: optimization and connections with transport efficiency. Phys. Rev. E 75 (2007), 051121. | DOI

[23] Li, S. H., Tian, Y. P.: Finite-time synchronization of chaotic systems. Chaos Solitons and Fractals 15 (2003), 303-310. | DOI | MR

[24] Lin, W., Chen, G. R.: Using white noise to enhance synchronization of coupled chaotic systems. Chaos 16 (2006), 013134. | DOI | MR | Zbl

[25] Lin, J. S., Yan, J. J.: Adaptive synchronization for two identical generalized Lorenz chaotic systems via a single controller. Nonlinear Anal. RWA 10 (2009), 1151-1159. | DOI | MR | Zbl

[26] Ouannas, A., Odibat, Z.: Generalized synchronization of different dimensional chaotic dynamical systems in discrete time. Nonlinear Dynam. 81 (2015), 765-771. | DOI | MR

[27] Pecora, L. M., Carroll, T. L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 821-824. | DOI | MR | Zbl

[28] Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge 2001. | DOI | MR

[29] Pourmahmood, M., Khanmohammadi, S., Alizadeh, G.: Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller. Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), 2853-2868. | DOI | MR | Zbl

[30] Stefanovska, A., Haken, H., McClintock, E., Hožič, M., Bajrović, F., Ribarič, S.: Reversible transitions between synchronization states of the cardiorespiratory system. Phys. Rev. Lett. 85 (2000), 4831-4834. | DOI

[31] Sun, Y. Z., Li, W., Zhao, D. H.: Finite-time stochastic outer synchronization between two complex dynamical networks with different topologies. Chaos 22 (2012), 023152. | DOI | MR

[32] Sun, Y. Z., Ruan, J.: Synchronization in coupled time-delayed systems with parameter mismath and noise perturbation. Chaos 19 (2009), 043113. | DOI

[33] Sun, Y. Z., Shi, H. J., Bakare, E. A., Meng, Q. X.: Noise-induced outer synchronization between two different complex dynamical networks. Nonlinear Dynam. 76 (2014), 519-528. | DOI | MR | Zbl

[34] Vincent, U. E., Guo, R.: Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller. Phys. Lett. A 375 (2011), 2322-2326. | DOI | Zbl

[35] Wang, H., Han, Z. Z., Zhang, W.: Finite-time chaos control of unified chaotic systems with uncertain parameters. Nonlinear Dynam. 55 (2009), 323-328. | DOI | MR

[36] Wu, J., Ma, Z. C., Sun, Y. Z., Liu, F.: Finite-time synchronization of chaotic systems with noise perturbation. Kybernetika 54 (2015), 137-149. | DOI | MR

[37] Yan, J. J., Hung, M. L., Chang, T. Y., Yang, Y. S.: Robust synchronization of chaotic systems via adaptive sliding mode control. Phys. Lett. A 356 (2006), 220-225. | DOI

[38] Yang, Y. Q., Wu, X. F.: Global finite-time synchronization of a class of the non-autonomous chaotic systems. Nonlinear Dynam. 70 (2012), 197-208. | DOI | MR | Zbl

[39] Yin, J. L., Khoo, S., Man, Z. H., Yu, X. H.: Finite-time stability and instability of stochastic nonlinear systems. Automatica 47 (2011), 2671-2677. | DOI | MR | Zbl

[40] Zhang, X. M., Han, Q. L., Yu, X. H.: Survey on recent advances in networked control systems. IEEE Trans. Ind. Informat. 12 (2016), 1740-1752. | DOI

[41] Zhang, G., Liu, Z. R., Ma, Z. J.: Generalized synchronization of different dimensional chaotic dynamical systems. Chaos Solitons and Fractals 32 (2007), 773-779. | DOI | MR

[42] Zhou, X. B., Jiang, M. R., Huang, Y. Q.: Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification. Kybernetika 50 (2014), 632-642. | DOI | MR | Zbl

Cité par Sources :