Keywords: descriptor systems; controllability; reachable controllability
@article{10_14736_kyb_2017_5_0820,
author = {Mishra, Vikas Kumar and Tomar, Nutan Kumar},
title = {Alternate checking criteria for reachable controllability of rectangular descriptor systems},
journal = {Kybernetika},
pages = {820--837},
year = {2017},
volume = {53},
number = {5},
doi = {10.14736/kyb-2017-5-0820},
mrnumber = {3750105},
zbl = {06861626},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0820/}
}
TY - JOUR AU - Mishra, Vikas Kumar AU - Tomar, Nutan Kumar TI - Alternate checking criteria for reachable controllability of rectangular descriptor systems JO - Kybernetika PY - 2017 SP - 820 EP - 837 VL - 53 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0820/ DO - 10.14736/kyb-2017-5-0820 LA - en ID - 10_14736_kyb_2017_5_0820 ER -
%0 Journal Article %A Mishra, Vikas Kumar %A Tomar, Nutan Kumar %T Alternate checking criteria for reachable controllability of rectangular descriptor systems %J Kybernetika %D 2017 %P 820-837 %V 53 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0820/ %R 10.14736/kyb-2017-5-0820 %G en %F 10_14736_kyb_2017_5_0820
Mishra, Vikas Kumar; Tomar, Nutan Kumar. Alternate checking criteria for reachable controllability of rectangular descriptor systems. Kybernetika, Tome 53 (2017) no. 5, pp. 820-837. doi: 10.14736/kyb-2017-5-0820
[1] Berger, T., Reis, T.: Controllability of linear differential-algebraic systems: A survey. In: Surveys in Differential-Algebraic Equations I, Differential-Algebraic Equations Forum, (A. Ilchman and T. Reis, eds.), Springer-Verlag, Berlin, Heildelberg 2013, pp. 1-61. | DOI | MR
[2] Berger, T., Trenn, S.: Kalman controllability decompositions for differential-algebraic systems. Syst. Control Lett. 71 (2014), 54-61. | DOI | MR
[3] Bernstein, D. S.: Matrix Mathematics: Theory, Facts, And Formulas With Application To Linear Systems Theory. Princeton University Press 41, Princeton 2005. | MR
[4] Bunse-Gerstner, A., Byers, R., Mehrmann, V., Nichols, N. K.: Feedback design for regularizing descriptor systems. Linear Algebra Appl. 299 (1999), 119-151. | DOI | MR
[5] Campbell, S.: Singular Systems Of Differential Equations. Pitman 40, San Francisco 1980. | MR
[6] Campbell, S.: Singular Systems Of Differential Equations II. Pitman 61, San Francisco 1982. | MR
[7] Campbell, S. L., Kunkel, P., Mehrmann, V.: Regularization of linear and nonlinear descriptor systems. In: Control and Optimization with Differential-Algebraic Constraints, Advances in Design and Control 2012, pp. 17-36. | DOI | MR
[8] Chen, C.-T.: Linear System Theory And Design. Oxford University Press, Inc. 1995.
[9] Christodoulou, M., Paraskevopoulos, P.: Solvability, controllability, and observability of singular systems. J. Optim. Theory Appl. 45 (1985), 53-72. | DOI | MR
[10] Chua, L. O., Desoer, C. A., Kuh, E. S.: Linear and Nonlinear Circuits. McGraw-Hill, New York 1987. | MR
[11] Cobb, D.: Controllability, observability, and duality in singular systems. IEEE Trans. Automat. Control 29 (1984), 1076-1082. | DOI | MR
[12] Dai, L.: The difference between regularity and irregularity in singular systems. Circuits Syst. Signal Process. 8 (1989), 435-444. | DOI | MR
[13] Dai, L.: Singular Control Systems. Springer Verlag, Lecture Notes in Control and Information Sciences, Berlin 1989. | DOI | MR
[14] Duan, G.-R.: Analysis and Design Of Descriptor Linear Systems. Springer 10, Berlin 2010. | MR
[15] Duan, G.-R., Nichols, N. K., Liu, G.-P.: Robust pole assignment in descriptor linear systems via state feedback. Eur. J. Control 8 (2002), 136-149. | DOI
[16] Gantmacher, F. R.: The Theory of Matrices: Vol. 2. Chelsea Publishing Company, New York 1959. | MR
[17] Geerts, T.: Solvability conditions, consistency, and weak consistency for linear differential-algebraic equations and time-invariant singular systems: the general case. Linear Algebra Appl. 181 (1993), 111-130. | DOI | MR
[18] Golub, G. H., Loan, C. F. Van: Matrix Computations. Third edition. Johns Hopkins University Press, Baltimore, London 1996. | MR
[19] Hautus, M.: Stabilization controllability and observability of linear autonomous systems. In: Proc. Indagationes Mathematicae 73, Elsevier 1970, pp. 448-455. | DOI | MR
[20] Hou, M.: Controllability and elimination of impulsive modes in descriptor systems. IEEE Trans. Automat. Control 49 (2004), 1723-1729. | DOI | MR
[21] Ishihara, J. Y., Terra, M. H.: Impulse controllability and observability of rectangular descriptor systems. IEEE Trans. Automat. Control 46 (2001), 991-994. | DOI | MR | Zbl
[22] Karampetakis, N., Jones, J., Antoniou, E.: Forward, backward, and symmetric solutions of discrete ARMA representations. Circuits Syst. Signal Process. 20 (2001), 89-109. | DOI | MR
[23] Kumar, A., Daoutidis, P.: Control of Nonlinear Differential Algebraic Equation Systems with Applications to Chemical Processes. | MR
[24] Kunkel, P., Mehrmann, V. .L.: Differential-algebraic Equations: Analysis and Numerical Solution. Europ. Math. Society, Zürich 2006. | DOI | MR
[25] Mishra, V. K., Tomar, N. K.: On complete and strong controllability for rectangular descriptor systems. Circuits Syst. Signal Process. 35 (2016), 1395-1406. | DOI | MR
[26] Mishra, V. K., Tomar, N. K., Gupta, M. K.: On controllability and normalizability for linear descriptor systems. J. Control Automat. Electr. Syst. 27 (2016), 19-28. | DOI
[27] Piziak, R., Odell, P. L.: Matrix Theory: From Generalized Inverses to Jordan Form. CRC Press 2007. | MR
[28] Stefanovski, J.: Transformation of optimal control problems of descriptor systems into problems with state-space systems. Kybernetika 48 (2012), 1156-1179. | MR
[29] Verghese, G. C., Levy, B. C., Kailath, T.: A generalized state-space for singular systems. IEEE Trans. Automat. Control 26 (1981), 811-831. | DOI | MR
[30] Yip, E., Sincovec, R.: Solvability, controllability, and observability of continuous descriptor systems. IEEE Trans. Automat. Control 26 (1981), 702-707. | DOI | MR
[31] Zhang, Q., Liu, C., Zhang, X.: Complexity, Analysis and Control of Singular Biological Systems. | MR
[32] Zubova, S. P.: On full controllability criteria of a descriptor system. The polynomial solution of a control problem with checkpoints. Automat. Remote Control 72 (2011), 23-37. | DOI | MR
Cité par Sources :