Keywords: multi-agent network; distributed optimization; linear algebraic equation; least squares solution; solvability verification
@article{10_14736_kyb_2017_5_0803,
author = {Zeng, Xianlin and Cao, Kai},
title = {Computation of linear algebraic equations with solvability verification over multi-agent networks},
journal = {Kybernetika},
pages = {803--819},
year = {2017},
volume = {53},
number = {5},
doi = {10.14736/kyb-2017-5-0803},
mrnumber = {3750104},
zbl = {06861625},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0803/}
}
TY - JOUR AU - Zeng, Xianlin AU - Cao, Kai TI - Computation of linear algebraic equations with solvability verification over multi-agent networks JO - Kybernetika PY - 2017 SP - 803 EP - 819 VL - 53 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0803/ DO - 10.14736/kyb-2017-5-0803 LA - en ID - 10_14736_kyb_2017_5_0803 ER -
%0 Journal Article %A Zeng, Xianlin %A Cao, Kai %T Computation of linear algebraic equations with solvability verification over multi-agent networks %J Kybernetika %D 2017 %P 803-819 %V 53 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-5-0803/ %R 10.14736/kyb-2017-5-0803 %G en %F 10_14736_kyb_2017_5_0803
Zeng, Xianlin; Cao, Kai. Computation of linear algebraic equations with solvability verification over multi-agent networks. Kybernetika, Tome 53 (2017) no. 5, pp. 803-819. doi: 10.14736/kyb-2017-5-0803
[1] Godsil, C., Royle, G. F.: Algebraic Graph Theory. Springer-Verlag, New York 2001. | DOI | MR | Zbl
[2] Haddad, W. M., Chellaboina, V.: Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach. Princeton University Press, New Jersey 2008. | MR | Zbl
[3] Hui, Q., Haddad, W. M., Bhat, S. P.: Semistability, finite-time stability, differential inclusions, and discontinuous dynamical systems having a continuum of equilibria. IEEE Trans. Automat. Control 54 (2009), 2465-2470. | DOI | MR
[4] Liu, Y., Lageman, C., Anderson, B., Shi, G.: An Arrow-Hurwicz-Uzawa type flow as least squares solver for network linear equations. arXiv:1701.03908v1.
[5] Liu, J., Morse, A. S., Nedic, A., Basar, T.: Exponential convergence of a distributed algorithm for solving linear algebraic equations. Automatica 83 (2017), 37-46. | DOI | MR
[6] Liu, J., Mou, S., Morse, A. S.: Asynchronous distributed algorithms for solving linear algebraic equations. IEEE Trans. Automat Control PP (2017), 99, 1-1. | DOI
[7] Mou, S., Liu, J., Morse, A. S.: A distributed algorithm for solving a linear algebraic equation. IEEE Trans. Automat. Control 60 (2015), 2863-2878. | DOI | MR
[8] Nedic, A., Ozdaglar, A., Parrilo, P. A.: Constrained consensus and optimization in multi-agent networks. IEEE Trans. Automat. Control 55 (2010), 922-938. | DOI | MR
[9] Ni, W., Wang, X.: Averaging approach to distributed convex optimization for continuous-time multi-agent systems. Kybernetika 52 (2016), 898-913. | DOI | MR
[10] Qiu, Z., Liu, S., Xie, L.: Distributed constrained optimal consensus of multi-agent systems. Automatica 68 (2016), 209-215. | DOI | MR
[11] Ruszczynski, A.: Nonlinear Optimization. Princeton University Press, New Jersey 2006. | MR
[12] Shi, G., Anderson, B. D. O.: Distributed network flows solving linear algebraic equations. In: American Control Conference, Boston 2016, pp. 2864-2869. | DOI
[13] Shi, G., Anderson, B. D. O., Helmke, U.: Network flows that solve linear equations. IEEE Trans. Automat. Control 62 (2017), 2659-2764. | DOI | MR
[14] Shi, G., Johansson, K. H.: Randomized optimal consensus of multi-agent systems. Automatica 48 (2012), 3018-3030. | DOI | MR
[15] Yi, P., Hong, Y., Liu, F.: Distributed gradient algorithm for constrained optimization with application to load sharing in power systems. Systems Control Lett. 83 (2015), 45-52. | DOI | MR | Zbl
[16] Zeng, X., Hui, Q.: Energy-event-triggered hybrid supervisory control for cyber-physical network systems. IEEE Trans. Automat. Control 60 (2015), 3083-3088. | DOI | MR
[17] Zeng, X., Yi, P., Hong, Y.: Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach. IEEE Trans. Automat. Control 62 (2017), 5227-5233. | DOI | MR
Cité par Sources :