Derivatives of Hadamard type in scalar constrained optimization
Kybernetika, Tome 53 (2017) no. 4, pp. 717-729
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Vsevolod I. Ivanov stated (Nonlinear Analysis 125 (2015), 270-289) the general second-order optimality condition for the constrained vector problem in terms of Hadamard derivatives. We will consider its special case for a scalar problem and show some corollaries for example for ${\ell}$-stable at feasible point functions. Then we show the advantages of obtained results with respect to the previously obtained results.
Vsevolod I. Ivanov stated (Nonlinear Analysis 125 (2015), 270-289) the general second-order optimality condition for the constrained vector problem in terms of Hadamard derivatives. We will consider its special case for a scalar problem and show some corollaries for example for ${\ell}$-stable at feasible point functions. Then we show the advantages of obtained results with respect to the previously obtained results.
DOI : 10.14736/kyb-2017-4-0717
Classification : 49J52, 49K10
Keywords: $C^{1;1}$–function; ${\ell }$–stable function; generalized second-order derivative; optimality conditions
@article{10_14736_kyb_2017_4_0717,
     author = {Pastor, Karel},
     title = {Derivatives of {Hadamard} type in scalar constrained optimization},
     journal = {Kybernetika},
     pages = {717--729},
     year = {2017},
     volume = {53},
     number = {4},
     doi = {10.14736/kyb-2017-4-0717},
     mrnumber = {3730260},
     zbl = {06819632},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-4-0717/}
}
TY  - JOUR
AU  - Pastor, Karel
TI  - Derivatives of Hadamard type in scalar constrained optimization
JO  - Kybernetika
PY  - 2017
SP  - 717
EP  - 729
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-4-0717/
DO  - 10.14736/kyb-2017-4-0717
LA  - en
ID  - 10_14736_kyb_2017_4_0717
ER  - 
%0 Journal Article
%A Pastor, Karel
%T Derivatives of Hadamard type in scalar constrained optimization
%J Kybernetika
%D 2017
%P 717-729
%V 53
%N 4
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-4-0717/
%R 10.14736/kyb-2017-4-0717
%G en
%F 10_14736_kyb_2017_4_0717
Pastor, Karel. Derivatives of Hadamard type in scalar constrained optimization. Kybernetika, Tome 53 (2017) no. 4, pp. 717-729. doi: 10.14736/kyb-2017-4-0717

[1] Bednařík, D., Berková, A.: On some properties of l-stable functions. In: Proc. 14th WSEAS Inter. Conf. on Math. Methods, Comput. Techniques and Intell. Systems, (A J. Viamonte, ed.), Porto 2012.

[2] Bednařík, D., Pastor, K.: On second-order conditions in unconstrained optimization. Math. Program. (Ser. A) 113 (2008), 283-298. | DOI | MR | Zbl

[3] Bednařík, D., Pastor, K.: Differentiability properties of functions that are ${\ell}$-stable at a point. Nonlinear Anal. 69 (2008), 3128-3135. | DOI | MR | Zbl

[4] Bednařík, D., Pastor, K.: $\ell$-stable functions are continuous. Nonlinear Anal. 70 (2009), 2317-2324. | DOI | MR

[5] Bednařík, D., Pastor, K.: Fréchet approach in second-order optimization. App. Math. Lett. 22 (2009), 960-967. | DOI | MR

[6] Bednařík, D., Pastor, K.: A note on second-order optimality conditions. Nonlinear Anal. 71 (2009), 1964-1969. | DOI | MR

[7] Bednařík, D., Pastor, K.: ${\ell}$-stable functions are continuous. Nonlinear Anal. 70 (2009), 2317-2324. | DOI | MR

[8] Bednařík, D., Pastor, K.: On l-stable mappings with values in infinite dimensional Banach spaces. Nonlinear Anal. 72 (2010), 1198-1209. | DOI | MR

[9] Bednařík, D., Pastor, K.: On second-order condition in constrained vector optimization. Nonlinear Anal. 74 (2011), 1372-1382. | DOI | MR

[10] Cominetti, R., Correa, R.: A generalized second-order derivative in nonsmooth optimization. SIAM J. Control Optim. 28 (1990), 789-809. | DOI | MR | Zbl

[11] Chan, W. L., Huang, L. R., Ng, K. F.: On generalized second-order derivatives and Taylor expansions in nonsmooth optimization. SIAM J. Control Optim. 32 (1994), 591-611. | DOI | MR | Zbl

[12] Dvorská, M., Pastor, K.: On comparison of $\ell$-stable vector optimization results. Math. Slovaca 64 (2014), 4, 1-18. | DOI | MR

[13] Dvorská, M., K., K. Pastor: Generalization of $C^{1,1}$ property in infinite dimension. Acta Math. Vietnam. 41 (2016), 265-275. | DOI | MR

[14] Demyanov, V. F., Rubinov, M.: Constructive Nonsmooth Analysis. Peter Lang, Frankfurt am Main 1995. | MR

[15] Ginchev, I.: On scalar and vector $\ell$-stable functions. Nonlinear Anal. 74 (2011), 182-194. | DOI | MR

[16] Ginchev, I., Guerraggio, A.: Second-order conditions for constrained vector optimization problems with ${\ell}$-stable data. Optimization 60 (2011), 179-199. | DOI | MR | Zbl

[17] Ginchev, I., Guerraggio, A., Rocca, M.: From scalar to vector optimization. Appl. Math. 51 (2006), 5-36. | DOI | MR | Zbl

[18] Guerragio, A., Luc, D. T.: Optimality conditions for $C^{1,1}$ vector optimization problems. J. Optim. Theory Appl. 109 (2001), 615-629. | DOI | MR

[19] Georgiev, P. G., Zlateva, N. P.: Second-order subdifferentials of $C^{1,1}$ functions and optimality conditions. Set-Valued Anal. 4 (1996), 101-117. | DOI | MR

[20] Hiriart-Urruty, J. B., Strodiot, J. J., Nguyen, V. H.: Generalized Hessian matrix and second-order optimality conditions for problems with $C^{1,1}$ data. Appl. Math. Optim. 11 (1984), 43-56. | DOI | MR

[21] Ivanov, V. I.: Second-optimality conditions with arbitrary nondifferentiable function in scalar and vector optimization. Nonlinear Anal. 125 (2015), 270-289. | DOI | MR

[22] Jahn, J.: Vector Optimization. Springer-Verlag, New York 2004. | DOI | MR | Zbl

[23] Jeyakumar, V., Luc, D. T.: Nonsmooth Vector Functions And Continuous Optimization. Springer, Berlin 2008. | MR

[24] Khanh, P. Q., Tuan, N. D.: Second-order optimality conditions with the envelope-like effect in nonsmooth multiobjective mathematical programming I: ${\ell}$-stability and set-valued directional derivatives. J. Math. Anal. Appl. 403 (2013), 695-702. | DOI | MR

[25] Khanh, P. Q., Tuan, N. D.: Second-order optimality conditions with the envelope-like effect in nonsmooth multiobjective mathematical programming II: Optimality conditions. J. Math. Anal. Appl. 403 (2013), 703-714. | DOI | MR | Zbl

[26] Liu, L., Křížek, M.: The second-order optimality conditions for nonlinear mathematical programming with $C^{1,1}$ data. Appl. Math. 42 (1997), 311-320. | DOI | MR

[27] Liu, L., Neittaanmäki, P., Křížek, M.: Second-order optimality conditions for nondominated solutions of multiobjective programming with $C^{1,1}$ data. Appl. Math. 45 (2000), 381-397. | DOI | MR

[28] Li, S. J., Xu, S.: Sufficient conditions of isolated minimizers for constrained programming problems. Numer. Func. Anal. Optim. 31 (2010), 715-727. | DOI | MR | Zbl

[29] Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications. Springer-Verlag, Berlin 2006. | MR | Zbl

[30] Pastor, K.: A note on second-order optimality conditions. Nonlinear Anal. 71 (2009), 1964-1969. | DOI | MR

[31] Pastor, K.: Differentiability properties of ${\ell}$-stable vector functions in infinite-dimensional normed spaces. Taiwanese J. Math. 18 (2014), 187-197. | DOI | MR

[32] Rockafellar, R. T.: Convex analysis. Princeton University Press, Princeton 1970. | MR

[33] Rockafellar, R. T., Wets, R. J.-B.: Variational Analysis. Springer-Verlag, New York 1998. | DOI | Zbl

[34] Torre, D. L., Rocca, M.: Remarks on second order generalized derivatives for differentiable functions with Lipschitzian jacobian. Appl. Math. E-Notes 3 (2003), 130-137. | MR

[35] Yang, X. Q.: On second-order directional derivatives. Nonlinear Anal. 26 (1996), 55-66. | DOI | MR

[36] Yang, X. Q.: On relations and applications of generalized second-order directional derivatives. Nonlinear Anal. 36 (1999), 595-614. | DOI | MR

Cité par Sources :