Derivatives of Hadamard type in scalar constrained optimization
Kybernetika, Tome 53 (2017) no. 4, pp. 717-729
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Vsevolod I. Ivanov stated (Nonlinear Analysis 125 (2015), 270-289) the general second-order optimality condition for the constrained vector problem in terms of Hadamard derivatives. We will consider its special case for a scalar problem and show some corollaries for example for ${\ell}$-stable at feasible point functions. Then we show the advantages of obtained results with respect to the previously obtained results.
DOI :
10.14736/kyb-2017-4-0717
Classification :
49J52, 49K10
Keywords: $C^{1;1}$–function; ${\ell }$–stable function; generalized second-order derivative; optimality conditions
Keywords: $C^{1;1}$–function; ${\ell }$–stable function; generalized second-order derivative; optimality conditions
@article{10_14736_kyb_2017_4_0717,
author = {Pastor, Karel},
title = {Derivatives of {Hadamard} type in scalar constrained optimization},
journal = {Kybernetika},
pages = {717--729},
publisher = {mathdoc},
volume = {53},
number = {4},
year = {2017},
doi = {10.14736/kyb-2017-4-0717},
mrnumber = {3730260},
zbl = {06819632},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-4-0717/}
}
TY - JOUR AU - Pastor, Karel TI - Derivatives of Hadamard type in scalar constrained optimization JO - Kybernetika PY - 2017 SP - 717 EP - 729 VL - 53 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-4-0717/ DO - 10.14736/kyb-2017-4-0717 LA - en ID - 10_14736_kyb_2017_4_0717 ER -
Pastor, Karel. Derivatives of Hadamard type in scalar constrained optimization. Kybernetika, Tome 53 (2017) no. 4, pp. 717-729. doi: 10.14736/kyb-2017-4-0717
Cité par Sources :