Empirical approximation in Markov games under unbounded payoff: discounted and average criteria
Kybernetika, Tome 53 (2017) no. 4, pp. 694-716
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This work deals with a class of discrete-time zero-sum Markov games whose state process $\left\{ x_{t}\right\} $ evolves according to the equation $ x_{t+1}=F(x_{t},a_{t},b_{t},\xi _{t}),$ where $a_{t}$ and $b_{t}$ represent the actions of player 1 and 2, respectively, and $\left\{ \xi _{t}\right\} $ is a sequence of independent and identically distributed random variables with unknown distribution $\theta$. Assuming possibly unbounded payoff, and using the empirical distribution to estimate $\theta$, we introduce approximation schemes for the value of the game as well as for optimal strategies considering both, discounted and average criteria.
This work deals with a class of discrete-time zero-sum Markov games whose state process $\left\{ x_{t}\right\} $ evolves according to the equation $ x_{t+1}=F(x_{t},a_{t},b_{t},\xi _{t}),$ where $a_{t}$ and $b_{t}$ represent the actions of player 1 and 2, respectively, and $\left\{ \xi _{t}\right\} $ is a sequence of independent and identically distributed random variables with unknown distribution $\theta$. Assuming possibly unbounded payoff, and using the empirical distribution to estimate $\theta$, we introduce approximation schemes for the value of the game as well as for optimal strategies considering both, discounted and average criteria.
DOI : 10.14736/kyb-2017-4-0694
Classification : 62G07, 91A15
Keywords: Markov games; empirical estimation; discounted and average criteria
@article{10_14736_kyb_2017_4_0694,
     author = {Luque-V\'asquez, Fernando and Minj\'arez-Sosa, J. Adolfo},
     title = {Empirical approximation in {Markov} games under unbounded payoff: discounted and average criteria},
     journal = {Kybernetika},
     pages = {694--716},
     year = {2017},
     volume = {53},
     number = {4},
     doi = {10.14736/kyb-2017-4-0694},
     mrnumber = {3730259},
     zbl = {06819631},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-4-0694/}
}
TY  - JOUR
AU  - Luque-Vásquez, Fernando
AU  - Minjárez-Sosa, J. Adolfo
TI  - Empirical approximation in Markov games under unbounded payoff: discounted and average criteria
JO  - Kybernetika
PY  - 2017
SP  - 694
EP  - 716
VL  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-4-0694/
DO  - 10.14736/kyb-2017-4-0694
LA  - en
ID  - 10_14736_kyb_2017_4_0694
ER  - 
%0 Journal Article
%A Luque-Vásquez, Fernando
%A Minjárez-Sosa, J. Adolfo
%T Empirical approximation in Markov games under unbounded payoff: discounted and average criteria
%J Kybernetika
%D 2017
%P 694-716
%V 53
%N 4
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-4-0694/
%R 10.14736/kyb-2017-4-0694
%G en
%F 10_14736_kyb_2017_4_0694
Luque-Vásquez, Fernando; Minjárez-Sosa, J. Adolfo. Empirical approximation in Markov games under unbounded payoff: discounted and average criteria. Kybernetika, Tome 53 (2017) no. 4, pp. 694-716. doi: 10.14736/kyb-2017-4-0694

[1] Chang, H. S.: Perfect information two-person zero-sum Markov games with imprecise transition probabilities. Math. Meth. Oper. Res. 64 (2006), 235-351. | DOI | MR

[2] Dudley, R. M.: The speed of mean Glivenko-Cantelli convergence. Ann. Math. Stat. 40 (1969), 40-50. | DOI | MR

[3] Dynkin, E. B., Yushkevich, A. A.: Controlled Markov Processes. Springer-Verlag, New York 1979. | DOI | MR

[4] Fernández-Gaucherand, E.: A note on the Ross-Taylor Theorem. Appl. Math. Comp. 64 (1994), 207-212. | DOI | MR

[5] Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer-Verlag, New York 1997. | DOI | MR

[6] Ghosh, M. K., McDonald, D., Sinha, S.: Zero-sum stochastic games with partial information. J. Optim. Theory Appl. 121 (2004), 99-118. | DOI | MR

[7] Gordienko, E. I.: Adaptive strategies for certain classes of controlled Markov processes. Theory Probab. Appl. 29 (1985), 504-518. | DOI | MR

[8] Gordienko, E. I., Hernández-Lerma, O.: Average cost Markov control processes with weighted norms: existence of canonical policies. Appl. Math. 23 (1995), 199-218. | MR | Zbl

[9] Gordienko, E. I., Hernández-Lerma, O.: Average cost Markov control processes with weighted norms: value iteration. Appl. Math. 23 (1995), 219-237. | MR

[10] Hernández-Lerma, O., Lasserre, J. B.: Discrete-Time Markov Control Processes: Basic Optimality Criteria. Springer-Verlag, New York 1996. | DOI | MR | Zbl

[11] Hilgert, N., Minjárez-Sosa, J. A.: Adaptive control of stochastic systems with unknown disturbance distribution: discounted criterion. Math. Meth. Oper. Res. 63 (2006), 443-460. | DOI | MR

[12] Jaśkiewicz, A., Nowak, A.: Zero-sum ergodic stochastic games with Feller transition probabilities. SIAM J. Control Optim. 45 (2006), 773-789. | DOI | MR

[13] Jaśkiewicz, A., Nowak, A.: Approximation of noncooperative semi-Markov games. J. Optim. Theory Appl. 131 (2006), 115-134. | DOI | MR

[14] Krausz, A., Rieder, U.: Markov games with incomplete information. Math. Meth. Oper. Res. 46 (1997), 263-279. | DOI | MR

[15] Minjárez-Sosa, J. A.: Nonparametric adaptive control for discrete-time Markov processes with unbounded costs under average criterion. Appl. Math. (Warsaw) 26 (1999), 267-280. | DOI | MR

[16] Minjárez-Sosa, J. A., Vega-Amaya, O.: Asymptotically optimal strategies for adaptive zero-sum discounted Markov games. SIAM J. Control Optim. 48 (2009), 1405-1421. | DOI | MR

[17] Minjárez-Sosa, J. A., Vega-Amaya, O.: Optimal strategies for adaptive zero-sum average Markov games. J. Math. Analysis Appl. 402 (2013), 44-56. | DOI | MR

[18] Minjárez-Sosa, J. A., Luque-Vásquez, F.: Two person zero-sum semi-Markov games with unknown holding times distribution on one side: discounted payoff criterion. Appl. Math. Optim. 57 (2008), 289-305. | DOI | MR

[19] Neyman, A., Sorin, S.: Stochastic Games and Applications. Kluwer, 2003. | DOI | MR

[20] Prieto-Rumeau, T., Lorenzo, J. M.: Approximation of zero-sum continuous-time Markov games under the discounted payoff criterion. TOP 23 (2015), 799-836. | DOI | MR

[21] Shimkin, N., Shwartz, A.: Asymptotically efficient adaptive strategies in repeated games. Part I: Certainty equivalence strategies. Math. Oper. Res. 20 (1995), 743-767. | DOI | MR

[22] Shimkin, N., Shwartz, A.: Asymptotically efficient adaptive strategies in repeated games. Part II: Asymptotic optimality. Math. Oper. Res. 21 (1996), 487-512. | DOI | MR

[23] Schäl, M.: Conditions for optimality and for the limit of $n$-stage optimal policies to be optimal. Z. Wahrs. Verw. Gerb. 32 (1975), 179-196. | DOI | MR

[24] Rao, R. Ranga: Relations between weak and uniform convergence of measures with applications. Ann. Math. Statist. 33 (1962), 659-680. | DOI | MR

[25] Nunen, J. A. E. E. Van, Wessels, J.: A note on dynamic programming with unbounded rewards. Manag. Sci. 24 (1978), 576-580. | DOI | MR

Cité par Sources :