Keywords: almost periodic solution; coincidence degree; fishing model; global attractivity
@article{10_14736_kyb_2017_4_0612,
author = {Zhang, Tianwei and Liao, Yongzhi},
title = {Existence and global attractivity of positive almost periodic solutions for a kind of fishing model with pure-delay},
journal = {Kybernetika},
pages = {612--629},
year = {2017},
volume = {53},
number = {4},
doi = {10.14736/kyb-2017-4-0612},
mrnumber = {3730255},
zbl = {06819627},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-4-0612/}
}
TY - JOUR AU - Zhang, Tianwei AU - Liao, Yongzhi TI - Existence and global attractivity of positive almost periodic solutions for a kind of fishing model with pure-delay JO - Kybernetika PY - 2017 SP - 612 EP - 629 VL - 53 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-4-0612/ DO - 10.14736/kyb-2017-4-0612 LA - en ID - 10_14736_kyb_2017_4_0612 ER -
%0 Journal Article %A Zhang, Tianwei %A Liao, Yongzhi %T Existence and global attractivity of positive almost periodic solutions for a kind of fishing model with pure-delay %J Kybernetika %D 2017 %P 612-629 %V 53 %N 4 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-4-0612/ %R 10.14736/kyb-2017-4-0612 %G en %F 10_14736_kyb_2017_4_0612
Zhang, Tianwei; Liao, Yongzhi. Existence and global attractivity of positive almost periodic solutions for a kind of fishing model with pure-delay. Kybernetika, Tome 53 (2017) no. 4, pp. 612-629. doi: 10.14736/kyb-2017-4-0612
[1] Berezansky, L., Braverman, E., Idels, L.: On delay differential equations with Hills type growth rate and linear harvesting. Comput. Math. Appl. 49 (2005), 549-563. | DOI | MR
[2] Berezansky, L., Idels, L.: Stability of a time-varying fishing model with delay. Appl. Math. Lett. 21 (2008), 447-452. | DOI | MR
[3] Dai, B. X., Su, H., Hu, D. W.: Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse. Nonlinear Anal. TMA 70 (2009), 126-134. | DOI | MR
[4] Du, B., Hu, M., Lian, X.: Dynamical behavior for a stochastic predator-prey model with HV type functional response. Bull. Malays. Math. Sci. Soc. 40 (2016), 1, 487-503. | DOI | MR
[5] Du, B., Liu, Y., Batarfi, H. A.: Almost periodic solution for a neutral-type neural networks with distributed leakage delays on time scales. Neurocomputing 173 (2016), 921-929. | DOI
[6] Du, B., Liu, Y., Atiatallah, A. I.: Existence and asymptotic behavior results of periodic solution for discrete-ime neutral-type neural networks. J. Franklin Inst., Engrg. Appl. Math. 353 (2016), 448-461. | DOI | MR
[7] Egami, C.: Positive periodic solutions of nonautonomous delay competitive systems with weak Allee effect. Nonlinear Anal. RWA 10 (2009), 494-505. | DOI | MR
[8] Fan, Y. H., Wang, L. L.: Periodic solutions in a delayed predator-prey model with nonmonotonic functional response. Nonlinear Anal. RWA 10 (2009), 3275-3284. | DOI | MR
[9] Fink, A. M.: Almost Periodic Differential Equation. Spring-Verlag, Berlin, Heidleberg, New York, 1974. | DOI | MR
[10] Gaines, R., Mawhin, J.: Coincidence Degree and Nonlinear Differential Equations. Springer Verlag, Berlin 1977. | DOI | MR
[11] Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Acad. Publ., 1992. | DOI | MR
[12] He, C. Y.: Almost Periodic Differential Equations. Higher Education Publishing House, Beijing, 1992 (in Chinese).
[13] Kot, M.: Elements of Mathematical Ecology. Cambr. Univ. Press, 2001. | DOI | MR
[14] Kuang, Y.: Delay Differential Equations With Applications in Population Dynamics. Academic Press, Inc., 1993. | DOI | MR | Zbl
[15] Liang, R. X., Shen, J. H.: Positive periodic solutions for impulsive predator-prey model with dispersion and time delays. Appl. Math. Comput. 217 (2010), 661-676. | DOI | MR
[16] Liao, Y. Z., Zhang, T. W.: Almost periodic solutions of a discrete mutualism model with variable delays. Discrete Dynamics in Nature and Society Volume 2012, Article ID 742102, 27 pages. | DOI | MR
[17] Lin, X. L., Jiang, Y. L., Wang, X. Q.: Existence of periodic solutions in predator-prey with Watt-type functional response and impulsive effects. Nonlinear Anal. TMA 73 (2010), 1684-1697. | DOI | MR
[18] Lu, S.: Applications of topological degree associated condensing field to the existence of periodic solutions for neutral functional differential equations with nonlinear difference operator. Acta Mathematica Sinica, English Series, to appear. | MR
[19] Lu, S., Zhong, T., Chen, L.: Periodic solutions for $p$-Laplacian Rayleigh equations with singularities. Boundary Value Problems 2016, 96 (2016). | MR
[20] Lu, S., Chen, L.: The problem of existence of periodic solutions for neutral functional differential system with nonlinear difference operator. J. Math. Anal. Appl. 387 (2012), 1127-1136. | DOI | MR
[21] Shu, J. Y., Zhang, T. W.: Multiplicity of almost periodic oscillations in a harvesting mutualism model with time delays. Dynam. Cont. Disc. Impul. Sys. B: Appl. Algor. 20 (2013), 463-483. | MR
[22] Wang, K.: Existence and global asymptotic stability of positive periodic solution for a predator-prey system with mutual interference. Nonlinear Anal. RWA 10 (2009), 2774-2783. | DOI | MR
[23] Wang, X. P.: Stability and existence of periodic solutions for a time-varying fishing model with delay. Nonlinear Anal.: RWA 11 (2010), 3309-3315. | DOI | MR
[24] Wang, K.: Periodic solutions to a delayed predator-prey model with Hassell-Varley type functional response. Nonlinear Anal. RWA 12 (2011), 137-145. | DOI | MR
[25] Wang, Q., Ding, M. M., Wang, Z. J., Zhang, H. Y.: Existence and attractivity of a periodic solution for an $N$-species Gilpin-Ayala impulsive competition system. Nonlinear Anal. RWA 11 (2010), 2675-2685. | DOI | MR
[26] Zhang, T. W.: Multiplicity of positive almost periodic solutions in a delayed Hassell-Varleytype predator-prey model with harvesting on prey. Math. Meth. Appl. Sci. 37 (2013), 686-697. | DOI | MR
[27] Zhang, T. W.: Almost periodic oscillations in a generalized Mackey-Glass model of respiratory dynamics with several delays. Int. J. Biomath. 7 (2014), 1450029 (22 pages). | DOI | MR
[28] Zhang, T. W., Gan, X. R.: Existence and permanence of almost periodic solutions for Leslie-Gower predator-prey model with variable delays. Elect. J. Differ. Equa. 2013 (2013), 1-21. | MR
[29] Zhang, T. W., Gan, X. R.: Almost periodic solutions for a discrete fishing model with feedback control and time delays. Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 150-163. | DOI | MR
[30] Zhang, T. W., Li, Y. K.: Positive periodic solutions for a generalized impulsive $n$-species Gilpin-Ayala competition system with continuously distributed delays on time scales. Int. J. Biomath. 4 (2011), 23-34. | DOI | MR
[31] Zhang, T. W., Li, Y. K., Ye, Y.: On the existence and stability of a unique almost periodic solution of Schoener's competition model with pure-delays and impulsive effects. Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1408-1422. | DOI | MR
[32] Zhang, T. W., Li, Y. K., Ye, Y.: Persistence and almost periodic solutions for a discrete fishing model with feedback control. Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1564-1573. | DOI | MR
[33] Zhang, G. D., Shen, Y., Chen, B. S.: Positive periodic solutions in a non-selective harvesting predator-prey model with multiple delays. J. Math. Anal. Appl. 395 (2012), 298-306. | DOI | MR
[34] Zhu, Y. L., Wang, K.: Existence and global attractivity of positive periodic solutions for a predator-prey model with modified Leslie-Gower Holling-type II schemes. J. Math. Anal. Appl. 384 (2011), 400-408. | DOI | MR
Cité par Sources :