Keywords: nonlinear support vector machine; multi-agent system; distributed optimization; connectivity
@article{10_14736_kyb_2017_4_0595,
author = {Wang, Yinghui and Lin, Peng and Qin, Huashu},
title = {Distributed classification learning based on nonlinear vector support machines for switching networks},
journal = {Kybernetika},
pages = {595--611},
year = {2017},
volume = {53},
number = {4},
doi = {10.14736/kyb-2017-4-0595},
mrnumber = {3730254},
zbl = {06819626},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-4-0595/}
}
TY - JOUR AU - Wang, Yinghui AU - Lin, Peng AU - Qin, Huashu TI - Distributed classification learning based on nonlinear vector support machines for switching networks JO - Kybernetika PY - 2017 SP - 595 EP - 611 VL - 53 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-4-0595/ DO - 10.14736/kyb-2017-4-0595 LA - en ID - 10_14736_kyb_2017_4_0595 ER -
%0 Journal Article %A Wang, Yinghui %A Lin, Peng %A Qin, Huashu %T Distributed classification learning based on nonlinear vector support machines for switching networks %J Kybernetika %D 2017 %P 595-611 %V 53 %N 4 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-4-0595/ %R 10.14736/kyb-2017-4-0595 %G en %F 10_14736_kyb_2017_4_0595
Wang, Yinghui; Lin, Peng; Qin, Huashu. Distributed classification learning based on nonlinear vector support machines for switching networks. Kybernetika, Tome 53 (2017) no. 4, pp. 595-611. doi: 10.14736/kyb-2017-4-0595
[1] Ali, R., Recht, B.: Random features for large-scale kernel machines. In: Advances in Neural Information Processing System, MIT Press, Massachusetts 2008, pp. 1177-1184.
[2] Bernhard, S., Smola, A. J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Massachusetts 2002.
[3] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3 (2011), 1-122. | DOI
[4] Chang, C. C., Lin, C. J.: LIBSVM: a library for support vector machines. JACM Trans. Intell. Systems Technol. 2 (2011), 1-27. | DOI
[5] Chapelle, O.: Training a support vector machine in the primal. Neural Computation 19 (2007), 1155-1178. | DOI | MR
[6] Chapelle, O., Zien, A: Semi-supervised classification by low density separation. In: Proc. International Conference on Artificial Intelligence and Statistics, Barbados 2005.
[7] Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20 (1995), 273-297. | DOI
[8] Drineas, P., Mahoney, M. W.: On the Nyström method for approximating a Gram matrix for improved kernel-based learning. J. Machine Learning Research 6 (2005), 2153-2175. | MR
[9] Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in Knowledge Discovery and Data Mining. AAAI Press, Menlo Park 1996.
[10] Flouri, K., Beferull-Lozano, B., Tsakalides, P.: Distributed consensus algorithms for SVM training in wireless sensor networks. In: 16th European Signal Processing Conference, Lausanne 2008. | DOI
[11] Forero, P A., Cano, A., Giannakis, G. B.: Consensus-based distributed support vector machines. J. Machine Learning Research 11 (2010), 1663-1707. | MR
[12] Franc, V., Sonnenburg, S.: Optimized cutting plane algorithm for support vector machines. In: Proc. 25th International Conference on Machine Learning, Helsinki 2008. | DOI | MR
[13] Hu, J.: On robust consensus of multi-agent systems with communication delays. Kybernetika 45 (2009), 768-784. | MR | Zbl
[14] Joachims, T., Finley, T., Yu, C. J.: Cutting-plane training of structural SVMs. Machine Learning 77 (2009), 27-59. | DOI
[15] Lee, S., Wright, S. J.: Approximate Stochastic Sub-gradient Estimation Training for Support Vector Machines. In: Mathematical Methodologies in Pattern Recognition and Machine Learning, Springer, New York 2011, pp. 67-82. | DOI
[16] Lou, Y., Hong, Y., Wang, S.: Distributed continuous-time approximate projection protocols for shortest distance optimization problems. Automatica 69 (2016), 289-297. | DOI | MR | Zbl
[17] Lu, Y., Roychowdhury, V., Vandenberghe, L.: Distributed parallel support vector machines in strongly connected networks. IEEE Trans. Neural Networks 19 (2008), 1167-1178. | DOI
[18] Kim, W., Park, J., Yoo, J., Kim, H. J., Park, C. G.: Target localization using ensemble support vector regression in wireless sensor networks. IEEE Trans. Cybernetics 43 (2013), 1189-1198. | DOI
[19] Kim, W., Stanković, M. S., Johansson, K. H., Kim, H.J.: A distributed support vector machine learning over wireless sensor networks. IEEE Trans. Neural Cybernetics 45 (2015), 2599–2611. | DOI
[20] Nedic, A., Asuman, O.: Distributed sub-gradient methods for multi-agent optimization. IEEE Trans. Automatic Control 54 (2009), 48-61. | DOI | MR
[21] Platt, J. C.: Fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel Methods, MIT Press, Massachusetts 1999, pp. 185-208.
[22] Polyak, B. T.: Introduction to Optimization. Springer, New York 1987. | MR
[23] Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Machine Learning Research 5 (2004), 101-141. | MR
[24] Scardapane, S., Fierimonte, R., Lorenzo, P. D., Panella, M., Uncini, A.: Distributed semi-supervised support vector machines. Neural Networks 80 (2016), 43-52. | DOI
[25] Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: Primal estimated sub-gradient solver for svm. In: Proc. 24th International Conference on Machine Learning, Oregon 2007. | DOI
[26] Sra, S., Nowozin, S., Wright, S. J.: Optimization for Machine Learning. MIT Press, Massachusetts 2012.
[27] Wang, X., Chen, Y.: Quantized distributed output regulation of multi-agent systems. Kybernetika 52 (2016), 427-440. | DOI | MR
[28] Weston, J., Watkins, C.: Support vector machines for multi-class pattern recognition. ESANN 99 (1999), 219-224.
[29] Yi, P., Hong, Y.: Stochastic sub-gradient algorithm for distributed optimization with random sleep scheme. Control Theory Technol. 13 (2015), 333-347. | DOI | MR
[30] Yuan, D., Ho, D. W. C., Hong, Y.: On Convergence rate of distributed stochastic gradient algorithm for convex optimization with inequality constraints. SIAM J. Control Optim. 54 (2016), 2872-2892. | DOI | MR
Cité par Sources :