Keywords: nonholonomic systems; feedback stabilization; systems with drift; adaptive backstepping; Lyapunov function
@article{10_14736_kyb_2017_4_0578,
author = {Abbasi, Waseem and ur Rehman, Fazal and Shah, Ibrahim},
title = {Backstepping based nonlinear adaptive control for the extended nonholonomic double integrator},
journal = {Kybernetika},
pages = {578--594},
year = {2017},
volume = {53},
number = {4},
doi = {10.14736/kyb-2017-4-0578},
mrnumber = {3730253},
zbl = {06819625},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-4-0578/}
}
TY - JOUR AU - Abbasi, Waseem AU - ur Rehman, Fazal AU - Shah, Ibrahim TI - Backstepping based nonlinear adaptive control for the extended nonholonomic double integrator JO - Kybernetika PY - 2017 SP - 578 EP - 594 VL - 53 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-4-0578/ DO - 10.14736/kyb-2017-4-0578 LA - en ID - 10_14736_kyb_2017_4_0578 ER -
%0 Journal Article %A Abbasi, Waseem %A ur Rehman, Fazal %A Shah, Ibrahim %T Backstepping based nonlinear adaptive control for the extended nonholonomic double integrator %J Kybernetika %D 2017 %P 578-594 %V 53 %N 4 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-4-0578/ %R 10.14736/kyb-2017-4-0578 %G en %F 10_14736_kyb_2017_4_0578
Abbasi, Waseem; ur Rehman, Fazal; Shah, Ibrahim. Backstepping based nonlinear adaptive control for the extended nonholonomic double integrator. Kybernetika, Tome 53 (2017) no. 4, pp. 578-594. doi: 10.14736/kyb-2017-4-0578
[1] Abbassi, W., Rehman, F.: Adaptive integral sliding mode stabilization of nonholonomic drift-free systems. Math. Problems Engrg. 2016 (2016), 1-11. | DOI | MR
[2] Aguiar, A. P., Atassi, A. N., Pascoal, A. M.: Regulation of a nonholonomic dynamic wheeled mobile robot with parametric modeling uncertainty using Lyapunov functions. In: Proc. 39th IEEE Conference on Decision and Control 3 (2000), 2995-3000. | DOI
[3] Aguiar, A. P., Pascoal, A. M.: Stabilization of the extended nonholonomic double integrator via logic-based hybrid control. IFAC Proc. Vol. 33 (2000), 27, 351-356. | DOI
[4] Astolfi, A.: Discontinuous control of the Brockett integrator. Europ. J. Control, 1, (1998), 49-63. | DOI
[5] Bloch, A., Drakunov, S.: Stabilization and tracking in the nonholonomic integrator via sliding modes. Systems Control Lett. 2 (1996), 91-99. | DOI | MR
[6] Brockett, R. W.: Asymptotic stability and feedback stabilization. In: Differential Geometric Control Theory (R. W. Brockett, R. S. Millman, and H. J. Sussman, eds.), Birkhauser, Boston 1983, pp. 181-191. | MR | Zbl
[7] Dixon, W. E., Jiang, Z. P., Dawson, D. M.: Global exponential setpoint control of wheeled mobile robots: A Lyapunov approach. In: Proc. 39th IEEE Conference on Decision and Control 2 (1999), 265-279. | MR
[8] Escobar, G., Ortega, R., Reyhanoglu, M.: Regulation and tracking of the nonholonomic double integrator: A field-oriented control approach. Automatica 1 (1998), 125-131. | DOI | MR
[9] Fang, F., Wei, L.: Backstepping-based nonlinear adaptive control for coal-fired utility boiler-turbine units. Appl. Energy 3 (2011), 814-824. | DOI
[10] Godhavn, J-M., Egeland, O.: A Lyapunov approach to exponential stabilization of nonholonomic systems in power form. IEEE Trans. Automat. Control 7 (1997), 1028-1032. | DOI | MR
[11] Jiang, Z. P., Nijmeijer, H.: A recursive technique for tracking control of nonholonomic systems in chained form. In: Proc. 39th IEEE Conference on Decision and Control 2 (1999), 265-279. | DOI | MR
[12] Kolmanovsky, I., McClamroch, N. H.: Developments in nonholonomic control problems. IEEE Control Syst. 6 (1995), 20-36. | DOI
[13] Morin, P., Samson, C.: Control of Nonlinear Chained Systems: From the Routh-Hurwitz Stability Criterion to Time-Varying Exponential Stabilizers. Springer 2000. | MR
[14] Pascoal, A. M., Aguiar, A. P.: Practical stabilization of the extended nonholonomic double integrator. In: Proc. 10th Mediterranean Conferenceon Control and Automation, 2002.
[15] Pomet, J. B.: Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift. Systems Control Lett. 2 (1992), 147-158. | DOI | MR
[16] Rehman, F.: Steering control of nonholonomic systems with drift: The extended nonholonomic double integrator example. Nonlinear Analysis Theory Methods Appl. 8 (2005), 1498-1515. | DOI | MR
[17] Sun, L.-Y., Tong, S., Liu, Y.: Adaptive backstepping sliding mode H infinity control of static var compensator. IEEE Trans. Control Systems Technol. 5 (2011), 1178-1185. | DOI
[18] Wang, Z., Li., S., Fei, S.: Finite-time tracking control of a nonholonomic mobile robot. Asian J. Control 3 (2009), 344-357. | DOI
[19] Zhou, J., Wen, C.: Adaptive Backstepping Control of Uncertain Systems: Nonsmooth Nonlinearities, Interactions or Time-Variations. Springer 2008. | MR
Cité par Sources :