Keywords: multi-agent systems; distributed Kalman filter; state constraints; stability
@article{10_14736_kyb_2017_3_0545,
author = {Hu, Chen and Qin, Weiwei and Li, Zhenhua and He, Bing and Liu, Gang},
title = {Consensus-based state estimation for multi-agent systems with constraint information},
journal = {Kybernetika},
pages = {545--561},
year = {2017},
volume = {53},
number = {3},
doi = {10.14736/kyb-2017-3-0545},
mrnumber = {3684685},
zbl = {06819623},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-3-0545/}
}
TY - JOUR AU - Hu, Chen AU - Qin, Weiwei AU - Li, Zhenhua AU - He, Bing AU - Liu, Gang TI - Consensus-based state estimation for multi-agent systems with constraint information JO - Kybernetika PY - 2017 SP - 545 EP - 561 VL - 53 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-3-0545/ DO - 10.14736/kyb-2017-3-0545 LA - en ID - 10_14736_kyb_2017_3_0545 ER -
%0 Journal Article %A Hu, Chen %A Qin, Weiwei %A Li, Zhenhua %A He, Bing %A Liu, Gang %T Consensus-based state estimation for multi-agent systems with constraint information %J Kybernetika %D 2017 %P 545-561 %V 53 %N 3 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-3-0545/ %R 10.14736/kyb-2017-3-0545 %G en %F 10_14736_kyb_2017_3_0545
Hu, Chen; Qin, Weiwei; Li, Zhenhua; He, Bing; Liu, Gang. Consensus-based state estimation for multi-agent systems with constraint information. Kybernetika, Tome 53 (2017) no. 3, pp. 545-561. doi: 10.14736/kyb-2017-3-0545
[1] Agniel, R. G., Jury, E. I: Almost sure boundedness of randomly sampled systems. SIAM J. Control 9 (1971), 372-384. | DOI | MR
[2] Battistelli, G., Chisci, L.: Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability. Automatica 50 (2014), 707-718. | DOI | MR
[3] Bell, B. M., Burke, J. V., Pillonetto, G.: An inequality constrained nonlinear Kalman-Bucy smoother by interior point likelihood maximization. Automatica 45 (2009), 25-33. | DOI | MR
[4] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge 2004. | DOI | MR | Zbl
[5] Cattivelli, F., Sayed, A.: Diffusion strategies for distributed Kalman filtering and smoothing. IEEE Trans. Automat. Control 55 (2010), 2069-2084. | DOI | MR
[6] Das, S., Moura, J. M. F.: Distributed Kalman filtering with dynamic observations consensus. IEEE Trans. Signal Process. 63 (2015), 4458-4473. | DOI | MR
[7] Godsil, C., Royle, G.: Algebraic Graph Theory. Springer-Verlag, New York 2001. | DOI | MR | Zbl
[8] Goodwin, G. C., Seron, M. M., Doná, J. A. De: Constrained Control And Estimation: An Optimisation Approach. Springer-Verlag, New York 2006. | DOI | MR
[9] Gupta, N., Hauser, R.: Kalman filtering with equality and inequality state constraints. arXiv preprint arXiv:0709.2791 DOI | MR
[10] Hu, J., Hu, X.: Optimal target trajectory estimation and filtering using networked sensors. In: Proc. 27th Chinese Control Conference, Kunming 2008, 540-545. | DOI | MR
[11] Hu, J., Hu, X.: Nonlinear filtering in target tracking using cooperative mobile sensors. Automatica 46 (2010), 2041-2046. | DOI | MR
[12] Hu, C., Qin, W., He, B., Liu, G.: Distributed $H_{\infty}$ estimation for moving target under switching multi-agent network. Kybernetika 51 (2014), 814-829. | DOI | MR
[13] Hu, J., Xie, L., Zhang, C.: Diffusion Kalman filtering based on covariance intersection. IEEE Trans. Signal Process. 60 (2012), 891-902. | DOI | MR
[14] Kamal, A. T., Farrell, J. A., Roy-Chowdhury, A. K.: Information weighted consensus filters and their application in distributed camera networks. IEEE Trans. Automat. Control 58 (2013), 3112-3125. | DOI | MR
[15] Khan, U. A., Jadbabaie, A.: Collaborative scalar-gain estimators for potentially unstable social dynamics with limited communication. Automatica 50 (2014), 1909-1914. | DOI | MR
[16] Ko, S., Bitmead, R.: State estimation for linear systems with state equality constraints. Automatica 43 (2007), 1363-1368. | DOI | MR
[17] Matei, I., Baras, J. S.: Consensus-based linear distributed filtering. Automatica 48 (2012), 1776-1782. | DOI | MR
[18] Nedić, A., Ozdaglar, A., Parrilo, P. A.: Constrained consensus and optimization in multi-agent networks. IEEE Trans. Automat Control 55 (2010), 922-938. | DOI | MR
[19] Olfati-Saber, R.: Distributed Kalman filtering for sensor networks. in Proc. IEEE Conference on Decision and Control, New Orleans 2007, pp. 5492-5498. | DOI
[20] Olfati-Saber, R.: Kalman-consensus filter: Optimality, stability, and performance. In: Proc. Joint IEEE Conference on Decision and Control and Chinese Control Conference, Shanghai 2009, pp. 7036-7042. | DOI
[21] Reif, K., Günther, S., Yaz, E., Unbehauen, R.: Stochastic stability of the discrete-time extended Kalman filter. IEEE Trans. Automat. Control 44 (1999), 714-728. | DOI | MR
[22] Shi, G., Johansson, K., Hong, Y.: Reaching an optimal consensus: Dynamical systems that compute intersections of convex sets. IEEE Trans. Automatic Control 58 (2013), 610-622. | DOI | MR
[23] Simon, D.: Kalman filtering with state constraints: a survey of linear and nonlinear algorithms. IET Control Theory Appl. 4 (2010), 1303-1318. | DOI | MR
[24] Simon, D., Chia, T. L.: Kalman filtering with state equality constraints. IEEE Trans. Aerospace Electronic Systems 38 (2002), 128-136. | DOI
[25] Simon, D., Simon, D. L.: Kalman filtering with inequality constraints for turbofan engine health estimation. IEE Proc. Control Theory Appl. 153 (2006), 371-378. | DOI
[26] Stanković, S. S., Stanković, M. S., Stipanović, D. M.: Consensus based overlapping decentralized estimation with missing observations and communication faults. Automatica 45 (2009), 1397-1406. | DOI | MR
[27] Tarn, T. J., Rasis, Y.: Observers for nonlinear stochastic systems. IEEE Trans. Automat. Control 21 (1976), 441-448. | DOI | MR
[28] Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. Syst. Control Lett. 53 (2004), 65-78. | DOI | MR | Zbl
[29] Zhou, Z., Fang, H., Hong, Y.: Distributed estimation for moving target under switching interconnection network. In: Proc. 12th International Conference on Control Automation Robotics Vision (ICARCV), Guangzhou 2012, pp. 1818-1823. | DOI
[30] Zhou, Z., Fang, H., Hong, Y.: Distributed estimation for moving target based on state-consensus strategy. IEEE Trans. Automat. Control 58 (2013), 2096-2101. | DOI | MR
Cité par Sources :