Consensus-based state estimation for multi-agent systems with constraint information
Kybernetika, Tome 53 (2017) no. 3, pp. 545-561 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper considers a distributed state estimation problem for multi-agent systems under state inequality constraints. We first give a distributed estimation algorithm by projecting the consensus estimate with help of the consensus-based Kalman filter (CKF) and projection on the surface of constraints. The consensus step performs not only on the state estimation but also on the error covariance obtained by each agent. Under collective observability and connective assumptions, we show that consensus of error covariance is bounded. Based on the Lyapunov method and projection, we provide and prove convergence conditions of the proposed algorithm and demonstrate its effectiveness via numerical simulations.
This paper considers a distributed state estimation problem for multi-agent systems under state inequality constraints. We first give a distributed estimation algorithm by projecting the consensus estimate with help of the consensus-based Kalman filter (CKF) and projection on the surface of constraints. The consensus step performs not only on the state estimation but also on the error covariance obtained by each agent. Under collective observability and connective assumptions, we show that consensus of error covariance is bounded. Based on the Lyapunov method and projection, we provide and prove convergence conditions of the proposed algorithm and demonstrate its effectiveness via numerical simulations.
DOI : 10.14736/kyb-2017-3-0545
Classification : 90B10
Keywords: multi-agent systems; distributed Kalman filter; state constraints; stability
@article{10_14736_kyb_2017_3_0545,
     author = {Hu, Chen and Qin, Weiwei and Li, Zhenhua and He, Bing and Liu, Gang},
     title = {Consensus-based state estimation for multi-agent systems with constraint information},
     journal = {Kybernetika},
     pages = {545--561},
     year = {2017},
     volume = {53},
     number = {3},
     doi = {10.14736/kyb-2017-3-0545},
     mrnumber = {3684685},
     zbl = {06819623},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-3-0545/}
}
TY  - JOUR
AU  - Hu, Chen
AU  - Qin, Weiwei
AU  - Li, Zhenhua
AU  - He, Bing
AU  - Liu, Gang
TI  - Consensus-based state estimation for multi-agent systems with constraint information
JO  - Kybernetika
PY  - 2017
SP  - 545
EP  - 561
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-3-0545/
DO  - 10.14736/kyb-2017-3-0545
LA  - en
ID  - 10_14736_kyb_2017_3_0545
ER  - 
%0 Journal Article
%A Hu, Chen
%A Qin, Weiwei
%A Li, Zhenhua
%A He, Bing
%A Liu, Gang
%T Consensus-based state estimation for multi-agent systems with constraint information
%J Kybernetika
%D 2017
%P 545-561
%V 53
%N 3
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-3-0545/
%R 10.14736/kyb-2017-3-0545
%G en
%F 10_14736_kyb_2017_3_0545
Hu, Chen; Qin, Weiwei; Li, Zhenhua; He, Bing; Liu, Gang. Consensus-based state estimation for multi-agent systems with constraint information. Kybernetika, Tome 53 (2017) no. 3, pp. 545-561. doi: 10.14736/kyb-2017-3-0545

[1] Agniel, R. G., Jury, E. I: Almost sure boundedness of randomly sampled systems. SIAM J. Control 9 (1971), 372-384. | DOI | MR

[2] Battistelli, G., Chisci, L.: Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability. Automatica 50 (2014), 707-718. | DOI | MR

[3] Bell, B. M., Burke, J. V., Pillonetto, G.: An inequality constrained nonlinear Kalman-Bucy smoother by interior point likelihood maximization. Automatica 45 (2009), 25-33. | DOI | MR

[4] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge 2004. | DOI | MR | Zbl

[5] Cattivelli, F., Sayed, A.: Diffusion strategies for distributed Kalman filtering and smoothing. IEEE Trans. Automat. Control 55 (2010), 2069-2084. | DOI | MR

[6] Das, S., Moura, J. M. F.: Distributed Kalman filtering with dynamic observations consensus. IEEE Trans. Signal Process. 63 (2015), 4458-4473. | DOI | MR

[7] Godsil, C., Royle, G.: Algebraic Graph Theory. Springer-Verlag, New York 2001. | DOI | MR | Zbl

[8] Goodwin, G. C., Seron, M. M., Doná, J. A. De: Constrained Control And Estimation: An Optimisation Approach. Springer-Verlag, New York 2006. | DOI | MR

[9] Gupta, N., Hauser, R.: Kalman filtering with equality and inequality state constraints. arXiv preprint arXiv:0709.2791 DOI  | MR

[10] Hu, J., Hu, X.: Optimal target trajectory estimation and filtering using networked sensors. In: Proc. 27th Chinese Control Conference, Kunming 2008, 540-545. | DOI | MR

[11] Hu, J., Hu, X.: Nonlinear filtering in target tracking using cooperative mobile sensors. Automatica 46 (2010), 2041-2046. | DOI | MR

[12] Hu, C., Qin, W., He, B., Liu, G.: Distributed $H_{\infty}$ estimation for moving target under switching multi-agent network. Kybernetika 51 (2014), 814-829. | DOI | MR

[13] Hu, J., Xie, L., Zhang, C.: Diffusion Kalman filtering based on covariance intersection. IEEE Trans. Signal Process. 60 (2012), 891-902. | DOI | MR

[14] Kamal, A. T., Farrell, J. A., Roy-Chowdhury, A. K.: Information weighted consensus filters and their application in distributed camera networks. IEEE Trans. Automat. Control 58 (2013), 3112-3125. | DOI | MR

[15] Khan, U. A., Jadbabaie, A.: Collaborative scalar-gain estimators for potentially unstable social dynamics with limited communication. Automatica 50 (2014), 1909-1914. | DOI | MR

[16] Ko, S., Bitmead, R.: State estimation for linear systems with state equality constraints. Automatica 43 (2007), 1363-1368. | DOI | MR

[17] Matei, I., Baras, J. S.: Consensus-based linear distributed filtering. Automatica 48 (2012), 1776-1782. | DOI | MR

[18] Nedić, A., Ozdaglar, A., Parrilo, P. A.: Constrained consensus and optimization in multi-agent networks. IEEE Trans. Automat Control 55 (2010), 922-938. | DOI | MR

[19] Olfati-Saber, R.: Distributed Kalman filtering for sensor networks. in Proc. IEEE Conference on Decision and Control, New Orleans 2007, pp. 5492-5498. | DOI

[20] Olfati-Saber, R.: Kalman-consensus filter: Optimality, stability, and performance. In: Proc. Joint IEEE Conference on Decision and Control and Chinese Control Conference, Shanghai 2009, pp. 7036-7042. | DOI

[21] Reif, K., Günther, S., Yaz, E., Unbehauen, R.: Stochastic stability of the discrete-time extended Kalman filter. IEEE Trans. Automat. Control 44 (1999), 714-728. | DOI | MR

[22] Shi, G., Johansson, K., Hong, Y.: Reaching an optimal consensus: Dynamical systems that compute intersections of convex sets. IEEE Trans. Automatic Control 58 (2013), 610-622. | DOI | MR

[23] Simon, D.: Kalman filtering with state constraints: a survey of linear and nonlinear algorithms. IET Control Theory Appl. 4 (2010), 1303-1318. | DOI | MR

[24] Simon, D., Chia, T. L.: Kalman filtering with state equality constraints. IEEE Trans. Aerospace Electronic Systems 38 (2002), 128-136. | DOI

[25] Simon, D., Simon, D. L.: Kalman filtering with inequality constraints for turbofan engine health estimation. IEE Proc. Control Theory Appl. 153 (2006), 371-378. | DOI

[26] Stanković, S. S., Stanković, M. S., Stipanović, D. M.: Consensus based overlapping decentralized estimation with missing observations and communication faults. Automatica 45 (2009), 1397-1406. | DOI | MR

[27] Tarn, T. J., Rasis, Y.: Observers for nonlinear stochastic systems. IEEE Trans. Automat. Control 21 (1976), 441-448. | DOI | MR

[28] Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. Syst. Control Lett. 53 (2004), 65-78. | DOI | MR | Zbl

[29] Zhou, Z., Fang, H., Hong, Y.: Distributed estimation for moving target under switching interconnection network. In: Proc. 12th International Conference on Control Automation Robotics Vision (ICARCV), Guangzhou 2012, pp. 1818-1823. | DOI

[30] Zhou, Z., Fang, H., Hong, Y.: Distributed estimation for moving target based on state-consensus strategy. IEEE Trans. Automat. Control 58 (2013), 2096-2101. | DOI | MR

Cité par Sources :