Keywords: switched processes; asymptotic controllability; bounded-input-bounded-state stability
@article{10_14736_kyb_2017_3_0530,
author = {Bacciotti, Andrea},
title = {Bounded-input-bounded-state stabilization of switched processes and periodic asymptotic controllability},
journal = {Kybernetika},
pages = {530--544},
year = {2017},
volume = {53},
number = {3},
doi = {10.14736/kyb-2017-3-0530},
mrnumber = {3684684},
zbl = {06819622},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-3-0530/}
}
TY - JOUR AU - Bacciotti, Andrea TI - Bounded-input-bounded-state stabilization of switched processes and periodic asymptotic controllability JO - Kybernetika PY - 2017 SP - 530 EP - 544 VL - 53 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-3-0530/ DO - 10.14736/kyb-2017-3-0530 LA - en ID - 10_14736_kyb_2017_3_0530 ER -
%0 Journal Article %A Bacciotti, Andrea %T Bounded-input-bounded-state stabilization of switched processes and periodic asymptotic controllability %J Kybernetika %D 2017 %P 530-544 %V 53 %N 3 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-3-0530/ %R 10.14736/kyb-2017-3-0530 %G en %F 10_14736_kyb_2017_3_0530
Bacciotti, Andrea. Bounded-input-bounded-state stabilization of switched processes and periodic asymptotic controllability. Kybernetika, Tome 53 (2017) no. 3, pp. 530-544. doi: 10.14736/kyb-2017-3-0530
[1] Bacciotti, A.: Periodic open-loop stabilization of planar switched systems. Europ. J. Control 21 (2015), 22-27. | DOI | MR
[2] Bacciotti, A.: Periodic asymptotic controllability of switched systems. Libertas Mathematica (new series) 34 (2014), 23-46. | DOI | MR
[3] Bacciotti, A., Mazzi, L.: Asymptotic controllability by means of eventually periodic switching rules. SIAM J. Control Optim. 49 (2011), 476-497. | DOI | MR
[4] Brockett, R. W.: Finite Dimensional Linear Systems. Wiley, New York 1970. | DOI | MR
[5] Ceragioli, F.: Finite valued feedback laws and piecewise classical solutions. Nonlinear Analysis 65 (2006), 984-998. | DOI | MR
[6] Conti, R.: Asymptotic control. In: Control Theory and Topics in Functional Analysis, International Atomic Energy Agency, Vienna 1976, pp. 329-360. | MR
[7] Conti, R.: Linear Differential Equations and Control. Academic Press, London 1976. | MR
[8] Lin, H., Antsaklis, P. J.: Stability and stabilization of switched linear systems: a survey of recent results. IEEE Trans. Automat. Control 54 (2009), 308-322. | DOI | MR
[9] Huang, Z., Xiang, C., Lin, H., Lee, T.: Necessary and sufficient conditions for regional stabilisability of generic switched linear systems with a pair of planar subsystems. Int. J. Control 83 (2010), 694-715. | DOI | MR
[10] Kundu, A., Chatterjee, D., Liberzon, D.: Generalized switching signals for input-to-state stability of switched systems. Automatica 64 (2016), 270-277. | DOI | MR
[11] Liberzon, D.: Switching in Systems and Control. Birkhäuser, Boston 2003. | DOI | MR | Zbl
[12] Sontag, E. D.: Mathematical Control Theory. Springer-Verlag, New York 1990. | DOI | MR | Zbl
[13] Sontag, E. D.: Smooth stabilization implies coprime factorization. IEEE Trans. Automat. Control 34 (1989), 435-443. | DOI | MR
[14] Sun, Z., Ge, S. S.: Switched Linear Systems. Springer-Verlag, London 2005. | DOI
[15] Tokarzewski, J.: Stability of periodically switched linear systems and the switching frequency. Int. J. Systems Sci. 18 (1987), 698-726. | DOI | MR
[16] Vu, L., Chatterjee, D., Liberzon, D.: Input-to-state stability of switched systems and switching adaptive control. Automatica 43 (2007), 639-646. | DOI | MR
[17] Feng, Wei, Zhang, JiFeng: Input-to-state stability of switched nonlinear systems. Science in China Series F: Information Sciences 51 (2008), 1992-2004. | DOI | MR
[18] Wicks, M., Peleties, P., DeCarlo, R. A.: Switched controller synthesis for the quadratic stabilization of a pair of unstable linear systems. Europ. J. Control 4 (1998), 140-147. | DOI
[19] Willems, J. L.: Stability Theory of Dynamical Systems. Nelson, London 1970.
[20] Xu, X., Antsaklis, P. J.: Stabilization of second-order LTI switched systems. Int. J. Control 73 (2000), 1261-1279. | DOI | MR
[21] Yang, G., Liberzon, D.: Input-to-state stability for switched systems with unstable subsystems: A hybrid Lyapunov construction. In: Proc. IEEE Conference on Decision and Control 2014 (2015), pp. 6240-6245. | DOI
[22] Yoshizawa, T.: Stability Theory by Liapunov's Second Method. Publications of the Mathematical Society of Japan No. 9, 1966. | MR
[23] Wang, Yue-E, Sun, Xi-Ming, Shi, Peng, Zhao, Jun: Input-to-State stability of switched nonlinear systems with time delays under asynchronous switching. IEEE Trans. Cybernetics 43 (2013), 2261-2265. | DOI
[24] Wang, Yue-E, Sun, Xi-Ming, Wang, Wei, Zhao, Jun: Stability properties of switched nonlinear delay systems with synchronous or asynchronous switching. Asian J. Control 17 (2015), 1187-1195. | DOI | MR
Cité par Sources :