Stability analysis for neutral-type impulsive neural networks with delays
Kybernetika, Tome 53 (2017) no. 3, pp. 513-529
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

By using linear matrix inequality (LMI) approach and Lyapunov functional method, we obtain some new sufficient conditions ensuring global asymptotic stability and global exponential stability of a generalized neutral-type impulsive neural networks with delays. A simulation example is provided to demonstrate the usefulness of the main results obtained. The main contribution in this paper is that a new neutral-type impulsive neural networks with variable delays is studied by constructing a novel Lyapunov functional and LMI approach.
By using linear matrix inequality (LMI) approach and Lyapunov functional method, we obtain some new sufficient conditions ensuring global asymptotic stability and global exponential stability of a generalized neutral-type impulsive neural networks with delays. A simulation example is provided to demonstrate the usefulness of the main results obtained. The main contribution in this paper is that a new neutral-type impulsive neural networks with variable delays is studied by constructing a novel Lyapunov functional and LMI approach.
DOI : 10.14736/kyb-2017-3-0513
Classification : 34G20, 35B40
Keywords: neutral-type; neural networks; Lyapunov functional method; stability
@article{10_14736_kyb_2017_3_0513,
     author = {Du, Bo and Liu, Yurong and Cao, Dan},
     title = {Stability analysis for neutral-type impulsive neural networks with delays},
     journal = {Kybernetika},
     pages = {513--529},
     year = {2017},
     volume = {53},
     number = {3},
     doi = {10.14736/kyb-2017-3-0513},
     mrnumber = {3684683},
     zbl = {06819621},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-3-0513/}
}
TY  - JOUR
AU  - Du, Bo
AU  - Liu, Yurong
AU  - Cao, Dan
TI  - Stability analysis for neutral-type impulsive neural networks with delays
JO  - Kybernetika
PY  - 2017
SP  - 513
EP  - 529
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-3-0513/
DO  - 10.14736/kyb-2017-3-0513
LA  - en
ID  - 10_14736_kyb_2017_3_0513
ER  - 
%0 Journal Article
%A Du, Bo
%A Liu, Yurong
%A Cao, Dan
%T Stability analysis for neutral-type impulsive neural networks with delays
%J Kybernetika
%D 2017
%P 513-529
%V 53
%N 3
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-3-0513/
%R 10.14736/kyb-2017-3-0513
%G en
%F 10_14736_kyb_2017_3_0513
Du, Bo; Liu, Yurong; Cao, Dan. Stability analysis for neutral-type impulsive neural networks with delays. Kybernetika, Tome 53 (2017) no. 3, pp. 513-529. doi: 10.14736/kyb-2017-3-0513

[1] Berman, A., Plemmons, R. J.: Nonnegative Matrices in Mathematical Sciences. Academic Press, New York 1979. | MR

[2] Bouzerdoum, A., Pattison, T. R.: Neural networks for quadratic optimization with bound constraints. IEEE Trans. Neural Networks 4 (1993), 293-303. | DOI

[3] Civalleri, P. P., Gilli, M., Pandolfi, L.: On stability of cellular neural networks with delay. IEEE Trans. Circuits Syst. I 40 (1993), 157-165. | DOI | MR

[4] Cheng, C., Liao, T., Yan, J., Hwang, C.: Globally asymptotic stability of a class of neutral-type neural networks with delays. IEEE Trans. Syst. Man Cybern. 36 (2006), 1191-1195. | DOI

[5] Cheng, L., Hou, Z., Tan, M.: A neutral-type delayed projection neural network for solving nonlinear variational inequalities. IEEE Trans. Circuits Syst. II-Express Brief 55 (2008), 806-810. | DOI

[6] Chua, L. O., Yang, L.: Cellular neural networks: applications. IEEE Trans. Circuits Syst. 35 (1988), 1273-1290. | DOI | MR

[7] Gui, Z., Ge, W., Yang, X.: Periodic oscillation for a Hopfield neural networks with neutral delays. Phys. Lett. A 364 (2007), 267-273. | DOI

[8] Guan, Z., Chen, G., Qin, Y.: On equilibria, stability and instability of Hopfield neural networks. IEEE Trans. Neural Networks 2 (2000), 534-540. | DOI

[9] Hale, J.: Theory of Functional Differential Equations. Applied Mathematical Springer-Verlag, New York 1977. | DOI | MR | Zbl

[10] Hang, X.-M., Han, Q.-L.: Event-based H$_\infty$ filtering for sampled-data systems. Automatica 51 (2015), 55-69. | DOI | MR

[11] He, W., Chen, G., Han, Q.-L., Qian, F.: Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control. Inform. Sci. 20 (2017), 145-158. | DOI

[12] He, W., Qian, F., Cao, J.: Pinning-controlled synchronization of delayed neural networks with distributed-delay coupling via impulsive control. Neural Networks 85 (2017), 1-9. | DOI

[13] He, W., Qian, F., Lam, J., Chen, G., Han, Q.-L., Kurths, J.: Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: Error estimation, optimization and design. Automatica 62 (2015), 249-262. | DOI | MR

[14] Ji, D. H., Koo, J. H., Won, S. C., Lee, S. M., Park, J. H.: Passivity-based control for Hopfield neural networks using convex representation. Appl. Math. Comput. 217 (2011), 6168-6175. | DOI | MR

[15] Kaul, S. K., Liu, X. Z.: Vector Lyapunov functions for impulsive differential systems with variable times. Dyn. Continuous Discrete Impulsive Systems 6 (1999), 25-38. | MR

[16] Kennedy, M. P., Chua, L. O.: Neural networks for non-linear programming. IEEE Trans. Circuits. Syst. 35 (1988), 554-562. | DOI | MR

[17] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations. World Scientific, Singapore 1989. | DOI | MR | Zbl

[18] Lakshmikantham, V., Leela, S., Kaul, S. K.: Comparison principle for impulsive differential equations with variable times and stability theory. Nonlinear Anal. 22 (1994), 499-503. | DOI | MR

[19] Lakshmikantham, V., Papageorgiou, N. S., Vasundhara, J.: The method of upper and lower solutions and monotone technique for impulsive differential equations with variable moments. Appl. Anal. 15 (1993), 41-58. | DOI | MR

[20] Lakshmanan, S., Park, J. H., Jung, H. Y., Balasubramaniam, P.: Design of state estimator for neural networks with leakage, discrete and distributed delays. Appl. Math. Comput. 218 (2012), 11297-11310. | DOI | MR

[21] Li, T., Zheng, W., Lin, C.: Delay-slope dependent stability results of recurrent neural networks. IEEE Trans. Neural Networks 22 (2011), 2138-2143. | DOI

[22] Lien, C., Yu, K., Lin, Y., Chung, Y., Chung, L.: Exponential convergence rate estimation for uncertain delayed neural networks of neutral type. Chao. Solit. Fract. 40 (2009), 2491-2499. | DOI | MR

[23] Liu, X., Ballinger, G.: Existence and continuability of solutions for differential equations with delays and state-dependent impulses. Nonlinear Anal. 51 (2002), 633-647. | DOI | MR

[24] Liu, Y., Wang, Z., Liu, X.: Global exponential stability of generalized recurrent neural networks with discrete and distributed delays. Neural Networks 19 (2006), 667-675. | DOI

[25] Long, S., Xu, D.: Delay-dependent stability analysis for impulsive neural networks with time varying delays. Neurocomputing 71 (2008), 1705-1713. | DOI | MR

[26] Marcus, C. M., Westervelt, R. M.: Stability of analog neural networks with delay. Phys. Rev. A 39 (1989), 347-359. | DOI | MR

[27] Niu, Y., Lam, J., Wang, X.: Sliding-mode control for uncertain neutral delay systems. IEE Proc. Part D: Control Theory Appl. 151 (2004), 38-44. | DOI

[28] Park, J. H.: Further result on asymptotic stability criterion of cellular neural networks with time-varying discrete and distributed delays. Appl. Math. Comput. 182 (2006), 1661-1666. | DOI | MR

[29] Park, J. H., Kwon, O., Lee, S.: LMI optimization approach on stability for delayed neural networks of neutral-type. Appl. Math. Comput. 196 (2008), 236-244. | DOI | MR

[30] Qin, J., Cao, J.: Delay-dependent robust stability of neutral-type neural networks with time delays. J. Math. Cont. Sci. Appl. 1 (2007), 179-188.

[31] Rakkiyappan, R., Balasubramaniama, P., Cao, J.: Global exponential stability results for neutral-type impulsive neural networks. Nonlinear Anal. RWA 11 (2010), 122-130. | DOI | MR

[32] Roska, T., Chua, L. O.: Cellular neural networks with nonlinear and delay-type templates. Int. J. Circuit Theory Appl. 20 (1992), 469-481. | DOI

[33] Samoilenko, A. M., Perestyuk, N. A.: Impulsive Differential Equations. World Scientific, Singapore 1995. | DOI

[34] Singh, V.: On global robust stability of interval Hopfield neural networks with delay. Chao. Solit. Fract. 33 (2007), 1183-1188. | DOI | MR

[35] Travis, C. C., Webb, G. F.: Existence and stability for partial functional differential equations. Trans. Amer. Math. Soc. 200 (1974), 395-418. | DOI | MR

[36] Wang, Z., Wang, Y., Liu, Y.: Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays. IEEE Trans. Neural Networks 21 (2010), 11-25. | DOI

[37] Wang, J., Zhang, X.-M., Han, Q.-L.: Event-triggered generalized dissipativity filtering for neural networks with time-varying delays. IEEE Trans. Neural Networks and Learning Systems 27 (2016), 77-88. | DOI | MR

[38] Webb, G. F.: Autonomos nonlinear functional differential equations and nonlinear semigroups. J. Math. Anal. Appl. 46 (1974), 1-12. | DOI | MR

[39] Xu, S., Lam, J., Ho, D., Zou, Y.: Delay-dependent exponential stability for class of neural networks with time delays. J. Comput. Appl. Math. 183 (2005), 16-28. | DOI | MR

[40] Xu, D., Yang, Z.: Impulsive delay differential inequality and stability of neural networks. J. Math. Anal. Appl. 305 (2005), 107-120. | DOI | MR

[41] Yang, Y., Cao, J.: Stability and periodicity in delayed cellular neural networks with impulsive effects. Nonlinear Anal. RWA 8 (2007), 362-374. | DOI | MR

[42] Zhang, J.: Global stability analysis in delayed cellular neural networks. Comput. Math. Appl. 45 (2003), 1707-1720. | DOI | MR

[43] Zhang, X.-M., Han, Q.-L.: New Lyapunov-Krasovskii functionals for global asymptotic stability of delayed neural networks. IEEE Trans. Neural Networks 20 (2009), 533-539. | DOI

[44] Zhang, X.-M., Han, Q.-L.: Global asymptotic stability for a class of generalized neural networks with interval time-varying delays. IEEE Trans. Neural Networks 22 (2011), 1180-1192. | DOI | MR

[45] Zhang, X.-M., Han, Q.-L.: Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach. Neural Networks 54 (2014), 57-69. | DOI

[46] Zhang, X.-M., Han, Q.-L.: Event-triggered H$_\infty$ control for a class of nonlinear networked control systems using novel integral inequalities. Int. J. Robust Nonlinear Control 27 (2016), 4, 679-700. | DOI | MR

[47] Zhang, Y., Sun, J. T.: Boundedness of the solutions of impulsive differential systems with time-varying delay. Appl. Math. Comput. 154 (2004), 279-288. | DOI | MR

[48] Zhang, Y., Xu, S., Chu, Y., Lu, J.: Robust global synchronization of complex networks with neutral-type delayed nodes. Appl. Math. Comput. 216 (2010), 768-778. | DOI | MR

Cité par Sources :