Keywords: multivariate quantile; regression quantile; halfspace depth; regression depth; depth contour
@article{10_14736_kyb_2017_3_0480,
author = {Bo\v{c}ek, Pavel and \v{S}iman, Miroslav},
title = {Directional quantile regression in {R}},
journal = {Kybernetika},
pages = {480--492},
year = {2017},
volume = {53},
number = {3},
doi = {10.14736/kyb-2017-3-0480},
mrnumber = {3684681},
zbl = {06819619},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-3-0480/}
}
Boček, Pavel; Šiman, Miroslav. Directional quantile regression in R. Kybernetika, Tome 53 (2017) no. 3, pp. 480-492. doi: 10.14736/kyb-2017-3-0480
[1] Boček, P., Šiman, M.: modQR: Multiple-Output Directional Quantile Regression. R package version 0.1.0, 2015.
[2] Boček, P., Šiman, M.: Directional quantile regression in Octave and MATLAB. Kybernetika 52 (2016), 28-51. | DOI | MR
[3] Chakraborty, B.: On multivariate quantile regression. J. Statist. Planning Inference 110 (2003), 109-132. | DOI | MR
[4] Charlier, I., Paindaveine, D., Saracco, J.: Multiple-output regression through optimal quantization. ECARES Working Paper 2016-18.
[5] Chaudhury, P.: On a geometric notion of quantiles for multivariate data. J. Amer. Stat. Assoc. 91 (1996), 862-872. | DOI | MR
[6] Cheng, Y., Gooijer, J. G. De: On the $u$th geometric conditional quantile. J. Statist. Planning Inference 137 (2007), 1914-1930. | DOI | MR | Zbl
[7] Došlá, Š.: Conditions for bimodality and multimodality of a mixture of two unimodal densities. Kybernetika 45 (2009) 279-292. | MR | Zbl
[8] Hallin, M., Lu, Z., Paindaveine, D., Šiman, M.: Local bilinear multiple-output quantile/depth regression. Bernoulli 21 (2015), 1435-1466. | DOI | MR
[9] Hallin, M., Paindaveine, D., Šiman, M.: Multivariate quantiles and multiple-output regression quantiles: From ${L}_1$ optimization to halfspace depth. Ann. Statist. 38 (2010), 635-669. | DOI | MR
[10] Hallin, M., Paindaveine, D., Šiman, M.: Rejoinder. Ann. Statist. 38 (2010), 694-703. | DOI | MR
[11] Koenker, R.: Quantile Regression. Cambridge University Press, New York 2005. | DOI | MR | Zbl
[12] Koenker, R., Bassett, G. J.: Regression quantiles. Econometrica 46 (1978), 33-50. | DOI | MR | Zbl
[13] Koltchinskii, V.: ${M}$-estimation, convexity and quantiles. Ann. Statist. 25 (1997), 435-477. | DOI | MR
[14] Kong, L., Mizera, I.: Quantile tomography: Using quantiles with multivariate data. Statistica Sinica 22 (2012), 1589-1610. | DOI | MR
[15] McKeague, I. W., López-Pintado, S., Hallin, M., Šiman, M.: Analyzing growth trajectories. J. Developmental Origins of Health and Disease 2 (2011), 322-329. | DOI
[16] Paindaveine, D., Šiman, M.: On directional multiple-output quantile regression. J. Multivariate Anal. 102 (2011), 193-212. | DOI | MR | Zbl
[17] Paindaveine, D., Šiman, M.: Computing multiple-output regression quantile regions. Comput. Statist. Data Anal. 56 (2012), 840-853. | DOI | MR | Zbl
[18] Paindaveine, D., Šiman, M.: Computing multiple-output regression quantile regions from projection quantiles. Comput. Statist. 27 (2012), 29-49. | DOI | MR | Zbl
[19] Šiman, M.: On exact computation of some statistics based on projection pursuit in a general regression context. Commun. Statist. - Simulation and Computation 40 (2011), 948-956. | DOI | MR | Zbl
[20] Šiman, M.: Precision index in the multivariate context. Commun. Statist. - Theory and Methods 43 (2014), 377-387. | DOI | MR
Cité par Sources :