Keywords: inventory control; Markovian analysis; stochastic lead-times; distribution inventory systems
@article{10_14736_kyb_2017_3_0461,
author = {Karaman, Abdullah S.},
title = {Approximate evaluation of continuous review $(R,Q)$ policies in two-echelon inventory systems with stochastic transportation times},
journal = {Kybernetika},
pages = {461--479},
year = {2017},
volume = {53},
number = {3},
doi = {10.14736/kyb-2017-3-0461},
mrnumber = {3684680},
zbl = {06819618},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-3-0461/}
}
TY - JOUR AU - Karaman, Abdullah S. TI - Approximate evaluation of continuous review $(R,Q)$ policies in two-echelon inventory systems with stochastic transportation times JO - Kybernetika PY - 2017 SP - 461 EP - 479 VL - 53 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-3-0461/ DO - 10.14736/kyb-2017-3-0461 LA - en ID - 10_14736_kyb_2017_3_0461 ER -
%0 Journal Article %A Karaman, Abdullah S. %T Approximate evaluation of continuous review $(R,Q)$ policies in two-echelon inventory systems with stochastic transportation times %J Kybernetika %D 2017 %P 461-479 %V 53 %N 3 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-3-0461/ %R 10.14736/kyb-2017-3-0461 %G en %F 10_14736_kyb_2017_3_0461
Karaman, Abdullah S. Approximate evaluation of continuous review $(R,Q)$ policies in two-echelon inventory systems with stochastic transportation times. Kybernetika, Tome 53 (2017) no. 3, pp. 461-479. doi: 10.14736/kyb-2017-3-0461
[1] Albin, S. L.: Approximating a point process by a renewal process, II: Superposition arrival processes to queues. Oper. Res. 32 (1984), 5, 1133-1162. | DOI | MR
[2] Altiok, T.: Performance Analysis of Manufacturing Systems. Springer Series in Operations Research and Financial Engineering. Springer, New York 1997. | DOI
[3] Axsäter, S.: Simple solution procedures for a class of two-echelon inventory problems. Oper. Res. 38 (1990), 1, 64-69. | DOI
[4] Axsäter, S.: Exact and approximate evaluation of batch-ordering policies for two-level inventory systems. Oper. Res. 41 (1993), 4, 777-785. | DOI
[5] Axsäter, S.: Exact analysis of continuous review $(R,Q)$ policies in two-echelon inventory systems with compound Poisson demand. Oper. Res. 48 (2000), 5, 686-696. | DOI | MR
[6] Axsäter, S.: Approximate optimization of a two-level distribution inventory system. Int. J. Product. Econom. 81 (2003), 545-553. | DOI
[7] Axsäter, S., Marklund, J.: Optimal position-based warehouse ordering in divergent two-echelon inventory systems. Oper. Res. 56 (2008), 4, 976-991. | DOI | MR
[8] Balcıoğlu, B., Jagerman, D. L., Altiok, T.: Approximate mean waiting time in a $GI/D/1$ queue with autocorrelated times to failures. IIE Trans. 39 (2007), 10, 985-996. | DOI
[9] Beamon, B. M.: Supply chain design and analysis: Models and methods. Int. J. Product. Econom. 55 (1998), 3, 281-294. | DOI
[10] Benjaafar, S., Cooper, W. L., Kim, J.-S.: On the benefits of pooling in production-inventory systems. Management Sci. 54 (2005), 548-565. | DOI
[11] Bitran, G. R., Dasu, S.: Approximating nonrenewal processes by Markov chains: Use of Super-Erlang (SE) chains. Oper. Res. 41 (1993), 5, 903-923. | DOI
[12] Bitran, G. R., Dasu, S.: Analysis of the $\sum Ph_i/Ph/1$ queue. Oper. Res. 42 (1994), 1, 158-174. | DOI | MR
[13] Buzacott, J. A., Kostelski, D.: Matrix-geometric and recursive algorithm solution of a two-stage unreliable how line. IIE Trans. 19 (1987), 4, 429-438. | DOI
[14] Cachon, G. P.: Exact evaluation of batch-ordering inventory policies in two-echelon supply chains with periodic review. Oper. Res. 49 (2001), 1, 79-98. | DOI | MR
[15] Chen, F., Zheng, Y.-S.: One-warehouse multiretailer systems with centralized stock information. Oper. Res. 45 (1997), 2, 275-287. | DOI
[16] Chew, E. P., Tang, L. C.: Warehouse-retailer system with stochastic demands - Non-identical retailer case. Europ. J. Oper. Res. 82 (1995), 1, 98-110. | DOI
[17] Deuermeyer, B. L, Schwarz, L. B.: A model for the analysis of system service level in warehouse-retailer distribution systems: The identical retailer case. Institute for Research in the Behavioral, Economic, and Management Sciences, Krannert Graduate School of Management, Purdue University, 1979.
[18] Diks, E. B., Kok, A. G. de, Lagodimos, A. G.: Multi-echelon systems: A service measure perspective. Europ. J. Oper. Res. 95 (1996), 2, 241-263. | DOI
[19] Erenguc, S. S., Simpson, N. C., Vakharia, A. J.: Integrated production/distribution planning in supply chains: An invited review. Europ. J. Oper. Res. 115 (1999), 2, 219-236. | DOI
[20] Eruguz, A. S., Sahin, E., Jemai, Z., Dallery, Y.: A comprehensive survey of guaranteed-service models for multi-echelon inventory optimization. Int. J. Product. Econom. 172 (2016), 110-125. | DOI
[21] Forsberg, R.: Exact evaluation of $(R,Q)$-policies for two-level inventory systems with Poisson demand. Europ. J. Oper. Res. 96 (1997), 1, 130-138. | DOI
[22] Girish, M. K., Hu, J.-Q.: Higher order approximations for the single server queue with splitting, merging and feedback. Europ. J. Oper. Res. 124 (2000), 3, 447-467. | DOI | MR
[23] Gurgur, C. Z., Altiok, T.: Approximate analysis of decentralized, multi-stage, pull-type production/inventory systems. Ann. Oper. Res. 125 (2004), 1-4, 95-116. | DOI | MR
[24] Karaman, A., Altiok, T.: Approximate Analysis of Batch Ordering Policies in Distribution Inventory Systems. Technical Report TR-2007-050, Rutgers University, Department of Industrial and Systems Engineering, 2007.
[25] Karaman, A., Altiok, T.: Approximate analysis and optimization of batch ordering policies in capacitated supply chains. Europ. J. Oper. Res. 193 (2009), 1, 222-237. | DOI
[26] Karaman, A. S.: Performance Analysis and Design of Batch Ordering Policies in Supply Chains. PhD Thesis, Rutgers, The State University of New Jersey, 2007.
[27] Lucantoni, D. M.: New results on the single server queue with a batch Markovian arrival process. Commun. Statist. Stoch. Models 7 (1991), 1, 1-46. | DOI | MR
[28] Moinzadeh, K., Lee, H. L.: Batch size and stocking levels in multi-echelon repairable systems. Management Sci. 32 (1986), 12, 1567-1581. | DOI
[29] Neuts, M. F.: Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. Dover Publications, 1994. | MR
[30] Norros, I., Roberts, J. W., Simonian, A., Virtamo, J. T.: The superposition of variable bit rate sources in an ATM multiplexer. IEEE J. Selected Areas Commun. 9 (1991), 3, 378-387. | DOI
[31] Osogami, T., Harchol-Balter, M.: A closed-form solution for mapping general distributions to minimal PH distributions. In: Computer Performance Evaluation. Modelling Techniques and Tools (P. Kemper and W. H. Sanders, eds.), Lecture Notes in Computer Science 2794, pp. 200-217. Springer Berlin Heidelberg, 2003. | DOI
[32] Schwarz, L. B., Deuermeyer, B. L., Badinelli, R. D.: Fill-rate optimization in a one-warehouse $N$-identical retailer distribution system. Management Sci. 31 (1985), 5, 488-498. | DOI | MR
[33] Sherbrooke, C. C.: Metric: A multi-echelon technique for recoverable item control. Operr. Res. 16 (1968), 1, 122-141. | DOI
[34] Svoronos, A., Zipkin, P.: Estimating the performance of multi-level inventory systems. Oper. Res. 36(1988), 57-72. | DOI
[35] Svoronos, A., Zipkin, P.: Evaluation of one-for-one replenishment policies for multiechelon inventory systems. Management Sci. 37 (1991), 1, 68-83. | DOI
[36] Tempelmeier, H.: A multi-level inventory system with a make-to-order supplier. Int. J. Product. Res. 51 (2013), 23-24, 6880-6890. | DOI
[37] Vuuren, M. van, Adan, I. J. B. F.: Approximating multiple arrival streams by using aggregation. Stoch. Models 22 (2006), 3, 423-440. | DOI | MR
[38] Whitt, W.: Approximating a point process by a renewal process, I: Two basic methods. Oper. Res. 30 (1982), 1, 125-147. | DOI | MR
[39] Zipkin, P.: The use of phase-type distributions in inventory-control models. Naval Res. Logistics 35 (1988), 2, 247-257. | DOI | MR
Cité par Sources :