Construction of uninorms on bounded lattices
Kybernetika, Tome 53 (2017) no. 3, pp. 394-417
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we propose the general methods, yielding uninorms on the bounded lattice $(L,\leq ,0,1)$, with some additional constraints on $e\in L\backslash \{0,1\}$ for a fixed neutral element $e\in L\backslash \{0,1\}$ based on underlying an arbitrary triangular norm $T_{e}$ on $[0,e]$ and an arbitrary triangular conorm $S_{e}$ on $[e,1]$. And, some illustrative examples are added for clarity.
In this paper, we propose the general methods, yielding uninorms on the bounded lattice $(L,\leq ,0,1)$, with some additional constraints on $e\in L\backslash \{0,1\}$ for a fixed neutral element $e\in L\backslash \{0,1\}$ based on underlying an arbitrary triangular norm $T_{e}$ on $[0,e]$ and an arbitrary triangular conorm $S_{e}$ on $[e,1]$. And, some illustrative examples are added for clarity.
DOI : 10.14736/kyb-2017-3-0394
Classification : 03B52, 03E72, 06B20
Keywords: bounded lattice; triangular norm; triangular conorm; uninorms
@article{10_14736_kyb_2017_3_0394,
     author = {\c{C}ayl{\i}, G\"ul Deniz and Kara\c{c}al, Funda},
     title = {Construction of uninorms on bounded lattices},
     journal = {Kybernetika},
     pages = {394--417},
     year = {2017},
     volume = {53},
     number = {3},
     doi = {10.14736/kyb-2017-3-0394},
     mrnumber = {3684677},
     zbl = {06819615},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-3-0394/}
}
TY  - JOUR
AU  - Çaylı, Gül Deniz
AU  - Karaçal, Funda
TI  - Construction of uninorms on bounded lattices
JO  - Kybernetika
PY  - 2017
SP  - 394
EP  - 417
VL  - 53
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-3-0394/
DO  - 10.14736/kyb-2017-3-0394
LA  - en
ID  - 10_14736_kyb_2017_3_0394
ER  - 
%0 Journal Article
%A Çaylı, Gül Deniz
%A Karaçal, Funda
%T Construction of uninorms on bounded lattices
%J Kybernetika
%D 2017
%P 394-417
%V 53
%N 3
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-3-0394/
%R 10.14736/kyb-2017-3-0394
%G en
%F 10_14736_kyb_2017_3_0394
Çaylı, Gül Deniz; Karaçal, Funda. Construction of uninorms on bounded lattices. Kybernetika, Tome 53 (2017) no. 3, pp. 394-417. doi: 10.14736/kyb-2017-3-0394

[1] Aşıcı, E., Karaçal, F.: On the T-partial order and properties. Inf. Sci. 267 (2014), 323-333. | DOI | MR

[2] Aşıcı, E., Karaçal, F.: Incomparability with respect to the triangular order. Kybernetika 52 (2016), 15-27. | DOI | MR

[3] Aşıcı, E.: An order induced by nullnorms and its properties. Fuzzy Sets Syst. In press 2017. | DOI | MR

[4] Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publ., Providence 1967. | DOI | MR | Zbl

[5] Baets, B. De: Idempotent uninorms. European J. Oper. Res. 118 (1999), 631-642. | DOI | Zbl

[6] Bodjanova, S., Kalina, M.: Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica. | DOI

[7] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inf. Sci. 367-368 (2016), 221-231. | DOI | MR

[8] Çaylı, G. D., Karaçal, F.: Some remarks on idempotent nullnorms on bounded lattices. In: Torra V., Mesiar R., Baets B. (eds) Aggregation Functions in Theory and in Practice. AGOP 2017. Advances in Intelligent Systems and Computing, Springer, Cham, 581 (2017), 31-39. | DOI | MR

[9] Drewniak, J., Drygaś, P.: On a class of uninorms. Int. J. Uncertainly Fuzziness Knowl.-Based Syst. 10 (2002), 5-10. | DOI | MR

[10] Drygaś, P.: On properties of uninorms with underlying t-norm and t-conorm given as ordinal sums. Fuzzy Sets Syst. 161 (2010), 149-157. | DOI | MR | Zbl

[11] Drygaś, P., Ruiz-Aguilera, D., Torrens, J.: Acharacterization of uninorms locally internal in $A(e)$ with continuous underlying operators. Fuzzy Sets Syst. 287 (2016), 137-153. | DOI | MR

[12] Drygaś, P., Rak, E.: Distributivity equation in the class of 2-uninorms. Fuzzy Sets Syst. 291 (2016), 82-97. | DOI | MR

[13] Ertuğrul, Ü., Kesicioğlu, M. N., Karaçal, F.: Ordering based on uninorms. Inf. Sci. 330 (2016), 315-327. | DOI

[14] Fodor, J., Yager, R. R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain Fuzziness Knowl.-Based Syst. 5 (1997), 411-427. | DOI | MR | Zbl

[15] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43. | DOI | MR

[16] Karaçal, F., Ertuğrul, Ü., Mesiar, R.: Characterization of uninorms on bounded lattices. Fuzzy Sets Syst. 308 (2017), 54-71. | DOI | MR

[17] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Acad. Publ., Dordrecht 2000. | DOI | MR | Zbl

[18] Mas, M., Monserrat, M., Torrens, J.: On left and right uninorms. Int. J. Uncertainly Fuzziness Knowl.-Based Syst. 9 (2001), 491-507. | DOI | MR | Zbl

[19] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, New York 1983. | MR | Zbl

[20] Takács, M.: Lattice Ordered Monoids and Left Continuous Uninorms and t-norms. Book Chapter from: Theoretical Advances and Applications of Fuzzy Logic and Soft Computing, Book Series: Advances in Soft Computing, Publisher: Springer Berlin/ Heidelberg, 42 (2007), 565-572. | DOI

[21] Wang, Z. D., Fang, J. X.: Residual operators of left and right uninorms on a complete lattice. Fuzzy Sets Syst. 160 (2009), 22-31. | DOI | MR

[22] Yager, R. R.: Misrepresentations and challenges: a response to Elkan. IEEE Expert 1994.

[23] Yager, R. R., Rybalov, A.: Uninorms aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120. | DOI | MR

Cité par Sources :