Generalized convexities related to aggregation operators of fuzzy sets
Kybernetika, Tome 53 (2017) no. 3, pp. 383-393
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We analyze the existence of fuzzy sets of a universe that are convex with respect to certain particular classes of fusion operators that merge two fuzzy sets. In addition, we study aggregation operators that preserve various classes of generalized convexity on fuzzy sets. We focus our study on fuzzy subsets of the real line, so that given a mapping $F: [0,1] \times [0,1] \rightarrow [0,1]$, a fuzzy subset, say $X$, of the real line is said to be $F$-convex if for any $x, y, z \in \mathbb{R}$ such that $x \le y \le z$, it holds that $\mu_X(y) \ge F(\mu_X(x),\mu_X(z))$, where $\mu_X: \mathbb{R} \rightarrow [0,1]$ stands here for the membership function that defines the fuzzy set $X$. We study the existence of such sets paying attention to different classes of aggregation operators (that is, the corresponding functions $F$, as above), and preserving $F$-convexity under aggregation of fuzzy sets. Among those typical classes, triangular norms $T$ will be analyzed, giving rise to the concept of norm convexity or $T$-convexity, as a particular case of $F$-convexity. Other different kinds of generalized convexities will also be discussed as a by-product.
DOI :
10.14736/kyb-2017-3-0383
Classification :
03E72, 26A51
Keywords: fuzzy sets; convexity and its generalizations; aggregation functions; fusion operators; triangular norms
Keywords: fuzzy sets; convexity and its generalizations; aggregation functions; fusion operators; triangular norms
@article{10_14736_kyb_2017_3_0383,
author = {D{\'\i}az, Susana and Indur\'ain, Esteban and Jani\v{s}, Vladim{\'\i}r and Llinares, Juan Vicente and Montes, Susana},
title = {Generalized convexities related to aggregation operators of fuzzy sets},
journal = {Kybernetika},
pages = {383--393},
publisher = {mathdoc},
volume = {53},
number = {3},
year = {2017},
doi = {10.14736/kyb-2017-3-0383},
mrnumber = {3684676},
zbl = {06819614},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-3-0383/}
}
TY - JOUR AU - Díaz, Susana AU - Induráin, Esteban AU - Janiš, Vladimír AU - Llinares, Juan Vicente AU - Montes, Susana TI - Generalized convexities related to aggregation operators of fuzzy sets JO - Kybernetika PY - 2017 SP - 383 EP - 393 VL - 53 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-3-0383/ DO - 10.14736/kyb-2017-3-0383 LA - en ID - 10_14736_kyb_2017_3_0383 ER -
%0 Journal Article %A Díaz, Susana %A Induráin, Esteban %A Janiš, Vladimír %A Llinares, Juan Vicente %A Montes, Susana %T Generalized convexities related to aggregation operators of fuzzy sets %J Kybernetika %D 2017 %P 383-393 %V 53 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-3-0383/ %R 10.14736/kyb-2017-3-0383 %G en %F 10_14736_kyb_2017_3_0383
Díaz, Susana; Induráin, Esteban; Janiš, Vladimír; Llinares, Juan Vicente; Montes, Susana. Generalized convexities related to aggregation operators of fuzzy sets. Kybernetika, Tome 53 (2017) no. 3, pp. 383-393. doi: 10.14736/kyb-2017-3-0383
Cité par Sources :