Cone-type constrained relative controllability of semilinear fractional systems with delays
Kybernetika, Tome 53 (2017) no. 2, pp. 370-381
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper presents fractional-order semilinear, continuous, finite-dimensional dynamical systems with multiple delays both in controls and nonlinear function $f$. The constrained relative controllability of the presented semilinear system and corresponding linear one are discussed. New criteria of constrained relative controllability for the fractional semilinear systems with delays under assumptions put on the control values are established and proved. The conical type constraints are considered. The results are illustrated by an example.
The paper presents fractional-order semilinear, continuous, finite-dimensional dynamical systems with multiple delays both in controls and nonlinear function $f$. The constrained relative controllability of the presented semilinear system and corresponding linear one are discussed. New criteria of constrained relative controllability for the fractional semilinear systems with delays under assumptions put on the control values are established and proved. The conical type constraints are considered. The results are illustrated by an example.
DOI : 10.14736/kyb-2017-2-0370
Classification : 34G20, 93B05, 93C05, 93C10
Keywords: the Caputo derivative; semilinear fractional systems; relative controllability; delays in control; constraints
@article{10_14736_kyb_2017_2_0370,
     author = {Sikora, Beata and Klamka, Jerzy},
     title = {Cone-type constrained relative controllability of semilinear fractional systems with delays},
     journal = {Kybernetika},
     pages = {370--381},
     year = {2017},
     volume = {53},
     number = {2},
     doi = {10.14736/kyb-2017-2-0370},
     mrnumber = {3661357},
     zbl = {06770173},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0370/}
}
TY  - JOUR
AU  - Sikora, Beata
AU  - Klamka, Jerzy
TI  - Cone-type constrained relative controllability of semilinear fractional systems with delays
JO  - Kybernetika
PY  - 2017
SP  - 370
EP  - 381
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0370/
DO  - 10.14736/kyb-2017-2-0370
LA  - en
ID  - 10_14736_kyb_2017_2_0370
ER  - 
%0 Journal Article
%A Sikora, Beata
%A Klamka, Jerzy
%T Cone-type constrained relative controllability of semilinear fractional systems with delays
%J Kybernetika
%D 2017
%P 370-381
%V 53
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0370/
%R 10.14736/kyb-2017-2-0370
%G en
%F 10_14736_kyb_2017_2_0370
Sikora, Beata; Klamka, Jerzy. Cone-type constrained relative controllability of semilinear fractional systems with delays. Kybernetika, Tome 53 (2017) no. 2, pp. 370-381. doi: 10.14736/kyb-2017-2-0370

[1] Ahmed, E., Hashis, A. H., Rihan, F. A.: On fractional order cancer model. J. Fractional Calculus Appl. 3 (2012), 1-6. | MR

[2] Babiarz, A., Niezabitowski, M.: Controllability Problem of Fractional Neutral Systems: A Survey. Math. Problems Engrg., ID 4715861 (2017), 15 pages. | DOI | MR

[3] Balachandran, K., Kokila, J., Trujillo, J. J.: Relative controllability of fractional dynamical systems with multiple delays in control. Comp. Math. Apll. 64 (2012), 3037-3045. | DOI | MR | Zbl

[4] Balachandran, K., Zhou, Y., Kokila, J.: Relative controllability of fractional dynamical systems with delays in control. Commun. Nonlinear. Sci. Numer. Simulat. 17 (2012), 3508-3520. | DOI | MR | Zbl

[5] Balachandran, K., Zhou, Y., Kokila, J.: Relative controllability of fractional dynamical systems with discributed delays in control. Comp. Math. Apll. 64 (2012), 3201-3206. | DOI | MR

[6] Balachandran, K.: Controllability of Nonlinear Fractional Delay Dynamical Systems with Multiple Delays in Control. Lecture Notes in Electrical Engineering. Theory and Applications of Non-integer Order Systems 407 (2016), 321-332. | DOI

[7] Bodnar, M., Piotrowska, J.: Delay differential equations: theory and applications. Matematyka Stosowana 11 (2011), 17-56 (in Polish). | MR

[8] Haque, M. A.: A predator-prey model with discrete time delay considering different growth function of prey. Adv. Apll. Math. Biosciences 2 (2011), 1-16. | DOI

[9] He, X.: Stability and delays in a predator-prey system. J. Math. Anal. Appl. 198 (1996), 355-370. | DOI | MR | Zbl

[10] Kaczorek, T.: Selected Problems of Fractional Systems Theory. Lect. Notes Control Inform. Sci. 411 2011. | DOI | MR | Zbl

[11] Kaczorek, T., Rogowski, K.: Fractional Linear Systems and Electrical Circuits. Studies in Systems, Decision and Control 13 2015. | DOI | MR | Zbl

[12] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204 2006. | MR | Zbl

[13] Klamka, J.: Controllability of Dynamical Systems. Kluwer Academic Publishers, 1991. | MR | Zbl

[14] Klamka, J.: Constrained controllability of semilinear systems with delayed controls. Bull. Polish Academy of Sciences: Technical Sciences 56 (2008), 333-337.

[15] Klamka, J., Sikora, B.: New controllability Criteria for Fractional Systems with Varying Delays. Lect. Notes Electr. Engrg. Theory and Applications of Non-integer Order Systems 407 (2017), 333-344. | DOI

[16] Krishnaveni, K., Kannan, K., Balachandar, S. R.: Approximate analytical solution for fractional population growth model. Int. J. Engrg. Technol. 5 (2013), 2832-2836.

[17] Machado, J. T., Costa, A. C., Quelhas, M. D.: Fractional dynamics in DNA. Comm. Nonlinear Sciences and Numerical Simulation 16 (2011), 2963-2969. | DOI | Zbl

[18] Malinowska, A. B., Odziejewicz, T., Schmeidel, E.: On the existence of optimal control for the fractional continuous-time Cucker-Smale model. Lect. Notes Electr. Engrg., Theory and Applications of Non-integer Order Systems 407 (2016), 227-240. | DOI

[19] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Calculus. Villey 1993. | MR

[20] Monje, A., Chen, Y., Viagre, B. M., Xue, D., Feliu, V.: Fractional-order Systems and Controls. Fundamentals and Applications. Springer-Verlag 2010. | DOI | MR

[21] Nirmala, R. J., Balachandran, K., Rodriguez-Germa, L., Trujillo, J. J.: Controllability of nonlinear fractional delay dynamical systems. Rep. Math. Physics 77 (2016), 87-104. | DOI | MR

[22] Oldham, K. B., Spanier, J.: The Fractional Calculus. Academic Press 1974. | MR | Zbl

[23] Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. In: Mathematics in Science and Engineering, Academic Press 1999. | DOI | MR | Zbl

[24] Robinson, S. M.: Stability theory for systems of inequalities. Part II. Differentiable nonlinear systems. SIAM J. Numerical Analysis 13 (1976), 497-513. | DOI | MR

[25] Sabatier, J., Agrawal, O. P., Machado, J. A. Tenreiro: Advances in Fractional Calculus. In: Theoretical Developments and Applications in Physics and Engineering, Springer-Verlag 2007. | DOI | MR

[26] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications. Gordan and Breach Science Publishers 1993. | MR | Zbl

[27] Sikora, B.: Controllability of time-delay fractional systems with and without constraints. IET Control Theory Appl. 10 (2016), 320-327. | DOI | MR

[28] Sikora, B.: Controllability criteria for time-delay fractional systems with a retarded state. Int. J. Applied Math. Computer Sci. 26 (2016), 521-531. | DOI | MR | Zbl

[29] Srivastava, V. K., Kumar, S., Awasthi, M., Singh, B. K.: Two-dimensional time fractional-order biological population model and its analytical solution. Egyptian J. Basic Appl. Sci. 1 (2014), 71-76. | DOI

[30] Wei, J.: The controllability of fractional control systems with control delay. Comput. Math. Appl. 64 (2012), 3153-3159. | DOI | MR | Zbl

[31] Zduniak, B., Bodnar, M., Foryś, U.: A modified Van der Pol equation with delay in a description of the heart action. Int. J. Appl. Math. Computer Sci. 24 (2014), 853-863. | DOI | MR | Zbl

[32] Zhang, H., Cao, J., Jiang, W.: Controllability criteria for linear fractional differential systems with state delay and impulses. J. Appl. Math., ID146010 (2013) 9 pages. | DOI | MR | Zbl

Cité par Sources :