Keywords: the Caputo derivative; semilinear fractional systems; relative controllability; delays in control; constraints
@article{10_14736_kyb_2017_2_0370,
author = {Sikora, Beata and Klamka, Jerzy},
title = {Cone-type constrained relative controllability of semilinear fractional systems with delays},
journal = {Kybernetika},
pages = {370--381},
year = {2017},
volume = {53},
number = {2},
doi = {10.14736/kyb-2017-2-0370},
mrnumber = {3661357},
zbl = {06770173},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0370/}
}
TY - JOUR AU - Sikora, Beata AU - Klamka, Jerzy TI - Cone-type constrained relative controllability of semilinear fractional systems with delays JO - Kybernetika PY - 2017 SP - 370 EP - 381 VL - 53 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0370/ DO - 10.14736/kyb-2017-2-0370 LA - en ID - 10_14736_kyb_2017_2_0370 ER -
%0 Journal Article %A Sikora, Beata %A Klamka, Jerzy %T Cone-type constrained relative controllability of semilinear fractional systems with delays %J Kybernetika %D 2017 %P 370-381 %V 53 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0370/ %R 10.14736/kyb-2017-2-0370 %G en %F 10_14736_kyb_2017_2_0370
Sikora, Beata; Klamka, Jerzy. Cone-type constrained relative controllability of semilinear fractional systems with delays. Kybernetika, Tome 53 (2017) no. 2, pp. 370-381. doi: 10.14736/kyb-2017-2-0370
[1] Ahmed, E., Hashis, A. H., Rihan, F. A.: On fractional order cancer model. J. Fractional Calculus Appl. 3 (2012), 1-6. | MR
[2] Babiarz, A., Niezabitowski, M.: Controllability Problem of Fractional Neutral Systems: A Survey. Math. Problems Engrg., ID 4715861 (2017), 15 pages. | DOI | MR
[3] Balachandran, K., Kokila, J., Trujillo, J. J.: Relative controllability of fractional dynamical systems with multiple delays in control. Comp. Math. Apll. 64 (2012), 3037-3045. | DOI | MR | Zbl
[4] Balachandran, K., Zhou, Y., Kokila, J.: Relative controllability of fractional dynamical systems with delays in control. Commun. Nonlinear. Sci. Numer. Simulat. 17 (2012), 3508-3520. | DOI | MR | Zbl
[5] Balachandran, K., Zhou, Y., Kokila, J.: Relative controllability of fractional dynamical systems with discributed delays in control. Comp. Math. Apll. 64 (2012), 3201-3206. | DOI | MR
[6] Balachandran, K.: Controllability of Nonlinear Fractional Delay Dynamical Systems with Multiple Delays in Control. Lecture Notes in Electrical Engineering. Theory and Applications of Non-integer Order Systems 407 (2016), 321-332. | DOI
[7] Bodnar, M., Piotrowska, J.: Delay differential equations: theory and applications. Matematyka Stosowana 11 (2011), 17-56 (in Polish). | MR
[8] Haque, M. A.: A predator-prey model with discrete time delay considering different growth function of prey. Adv. Apll. Math. Biosciences 2 (2011), 1-16. | DOI
[9] He, X.: Stability and delays in a predator-prey system. J. Math. Anal. Appl. 198 (1996), 355-370. | DOI | MR | Zbl
[10] Kaczorek, T.: Selected Problems of Fractional Systems Theory. Lect. Notes Control Inform. Sci. 411 2011. | DOI | MR | Zbl
[11] Kaczorek, T., Rogowski, K.: Fractional Linear Systems and Electrical Circuits. Studies in Systems, Decision and Control 13 2015. | DOI | MR | Zbl
[12] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204 2006. | MR | Zbl
[13] Klamka, J.: Controllability of Dynamical Systems. Kluwer Academic Publishers, 1991. | MR | Zbl
[14] Klamka, J.: Constrained controllability of semilinear systems with delayed controls. Bull. Polish Academy of Sciences: Technical Sciences 56 (2008), 333-337.
[15] Klamka, J., Sikora, B.: New controllability Criteria for Fractional Systems with Varying Delays. Lect. Notes Electr. Engrg. Theory and Applications of Non-integer Order Systems 407 (2017), 333-344. | DOI
[16] Krishnaveni, K., Kannan, K., Balachandar, S. R.: Approximate analytical solution for fractional population growth model. Int. J. Engrg. Technol. 5 (2013), 2832-2836.
[17] Machado, J. T., Costa, A. C., Quelhas, M. D.: Fractional dynamics in DNA. Comm. Nonlinear Sciences and Numerical Simulation 16 (2011), 2963-2969. | DOI | Zbl
[18] Malinowska, A. B., Odziejewicz, T., Schmeidel, E.: On the existence of optimal control for the fractional continuous-time Cucker-Smale model. Lect. Notes Electr. Engrg., Theory and Applications of Non-integer Order Systems 407 (2016), 227-240. | DOI
[19] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Calculus. Villey 1993. | MR
[20] Monje, A., Chen, Y., Viagre, B. M., Xue, D., Feliu, V.: Fractional-order Systems and Controls. Fundamentals and Applications. Springer-Verlag 2010. | DOI | MR
[21] Nirmala, R. J., Balachandran, K., Rodriguez-Germa, L., Trujillo, J. J.: Controllability of nonlinear fractional delay dynamical systems. Rep. Math. Physics 77 (2016), 87-104. | DOI | MR
[22] Oldham, K. B., Spanier, J.: The Fractional Calculus. Academic Press 1974. | MR | Zbl
[23] Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. In: Mathematics in Science and Engineering, Academic Press 1999. | DOI | MR | Zbl
[24] Robinson, S. M.: Stability theory for systems of inequalities. Part II. Differentiable nonlinear systems. SIAM J. Numerical Analysis 13 (1976), 497-513. | DOI | MR
[25] Sabatier, J., Agrawal, O. P., Machado, J. A. Tenreiro: Advances in Fractional Calculus. In: Theoretical Developments and Applications in Physics and Engineering, Springer-Verlag 2007. | DOI | MR
[26] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications. Gordan and Breach Science Publishers 1993. | MR | Zbl
[27] Sikora, B.: Controllability of time-delay fractional systems with and without constraints. IET Control Theory Appl. 10 (2016), 320-327. | DOI | MR
[28] Sikora, B.: Controllability criteria for time-delay fractional systems with a retarded state. Int. J. Applied Math. Computer Sci. 26 (2016), 521-531. | DOI | MR | Zbl
[29] Srivastava, V. K., Kumar, S., Awasthi, M., Singh, B. K.: Two-dimensional time fractional-order biological population model and its analytical solution. Egyptian J. Basic Appl. Sci. 1 (2014), 71-76. | DOI
[30] Wei, J.: The controllability of fractional control systems with control delay. Comput. Math. Appl. 64 (2012), 3153-3159. | DOI | MR | Zbl
[31] Zduniak, B., Bodnar, M., Foryś, U.: A modified Van der Pol equation with delay in a description of the heart action. Int. J. Appl. Math. Computer Sci. 24 (2014), 853-863. | DOI | MR | Zbl
[32] Zhang, H., Cao, J., Jiang, W.: Controllability criteria for linear fractional differential systems with state delay and impulses. J. Appl. Math., ID146010 (2013) 9 pages. | DOI | MR | Zbl
Cité par Sources :