Keywords: Hamiltonian system; Melnikov's methods; homoclinic orbits; periodic orbits; periodic parametric perturbation; dynamics at infinity
@article{10_14736_kyb_2017_2_0354,
author = {Wang, Zhen and Sun, Wei and Wei, Zhouchao and Zhang, Shanwen},
title = {Periodic parametric perturbation control for a {3D} autonomous chaotic system and its dynamics at infinity},
journal = {Kybernetika},
pages = {354--369},
year = {2017},
volume = {53},
number = {2},
doi = {10.14736/kyb-2017-2-0354},
mrnumber = {3661356},
zbl = {06770172},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0354/}
}
TY - JOUR AU - Wang, Zhen AU - Sun, Wei AU - Wei, Zhouchao AU - Zhang, Shanwen TI - Periodic parametric perturbation control for a 3D autonomous chaotic system and its dynamics at infinity JO - Kybernetika PY - 2017 SP - 354 EP - 369 VL - 53 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0354/ DO - 10.14736/kyb-2017-2-0354 LA - en ID - 10_14736_kyb_2017_2_0354 ER -
%0 Journal Article %A Wang, Zhen %A Sun, Wei %A Wei, Zhouchao %A Zhang, Shanwen %T Periodic parametric perturbation control for a 3D autonomous chaotic system and its dynamics at infinity %J Kybernetika %D 2017 %P 354-369 %V 53 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0354/ %R 10.14736/kyb-2017-2-0354 %G en %F 10_14736_kyb_2017_2_0354
Wang, Zhen; Sun, Wei; Wei, Zhouchao; Zhang, Shanwen. Periodic parametric perturbation control for a 3D autonomous chaotic system and its dynamics at infinity. Kybernetika, Tome 53 (2017) no. 2, pp. 354-369. doi: 10.14736/kyb-2017-2-0354
[1] Chen, Y., Cao, L., Sun, M.: Robust midified function projective synchronization in network with unknown parameters and mismatch parameters. Int. J. Nonlinear Sci. 10 (2010), 17-23. | MR
[2] Čelikovský, S., Vaněček, A.: Bilinear systems and chaos. Kybernetika 30 (1994), 403-424. | MR | Zbl
[3] Dumortier, F., Llibre, J., Artes, J. C.: Qualitative Theory of Planar Differential Systems. Springer, Berlin 2006. | MR | Zbl
[4] Fang, Y. Y., Xu, Z. Y., Cai, C. H.: Melnikov analysis of feedback control of chaotic dynamics system. J. Wuxi University of Light Industry 20 (2001), 624-629.
[5] Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin 2002. | DOI | MR | Zbl
[6] Jafari, S., Sprott, J. C.: Simple chaotic flows with a line equilibrium. Chaos, Solitons and Fractals 57 (2013), 79-84. | DOI | MR | Zbl
[7] Kuznetsov, A. P., Kuznetsov, S. P., Stankevich, N. V.: A simple autonomous quasiperiodic self-oscillator. Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 1676-1681. | DOI
[8] Li, J. B., Zhao, X. H., Liu, Z. R.: Theory of Generalized Hamiltonian System and its Applications. Science Press, Beijing 2007.
[9] Li, Y., Wu, X. Q., Lu, J. A., Lü, J. H.: Synchronizability of duplex networks. IEEE Trans. Circuits and Systems II 63 (2016), 206-210. | DOI
[10] Liu, K. X., Wu, L. L., Lü, J. H., Zhu, H. H.: Finite-time adaptive consensus of a class of multi-agent systems. Science China-Technological Sciences 59 (2016), 22-32. | DOI
[11] Liu, Y. J.: Analysis of global dynamics in an unusual 3D chaotic system. Nonlinear Dyn. 70 (2012), 2203-2212. | DOI | MR | Zbl
[12] Liu, Z. R.: Perturbation Criteria for Chaos. Shanghai Scientific and Technological Education Publishing House, Shanghai 1994.
[13] Lorenz, E. N.: Deterministic non-periodic flow. J. Atmospheric Sci. 20 (1963), 130-141. | DOI
[14] Lü, J. H., Chen, G. R.: A new chaotic attractor coined. Int. J. Bifurcation and Chaos 12 (2002), 659-661. | DOI | MR | Zbl
[15] Mirus, K. A., Sprott, J. C.: Controlling chaos in a high dimensional systems with periodic parametric perturbations. Phys. Lett. A 254 (1999), 275-278. | DOI
[16] Mirus, K. A., Sprott, J. C.: Controlling chaos in low- and high-dimensional systems with periodic parametric perturbations. Phys. Rev. E 59 (1999), 5313-5324. | DOI
[17] Shen, C. W., Yu, S. M., Chen, G. R.: Constructing hyperchaotic systems at will. Int. J. Circuit Theory Appl. 43 (2015), 2039-2056. | DOI
[18] Sprott, J. C.: Some simple chaotic flows. Phys. Rev. E {\mi50} (1994), 647-650. | DOI | MR
[19] Tan, S. L., Lü, J. H., Hill, D. J.: Towards a theoretical framework for analysis and intervention of random drift on general networks. IEEE Trans. Automat. Control 60 (2015), 576-581. | DOI | MR
[20] Tigan, G.: Analysis of a dynamical system derived from the Lorenz system. Scientific Bull. Politehnica University of Timisoara 50 (2005), 61-72. | MR | Zbl
[21] Wang, Q. X., Yu, S. M., Li, C. Q., Lü, J. H., Fang, X. L., Bahi, J. M.: Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems. IEEE Trans. Circuits and Systems I 63 (2016), 401-412. | DOI | MR
[22] Wang, X., Chen, G. R.: Constructing a chaotic system with any number of equilibria. Nonlinear Dynamics 71 (2013), 429-436. | DOI | MR
[23] Wang, Z.: Existence of attractor and control of a 3D differential system. Nonlinear Dynmics 60 (2010), 369-373. | DOI | MR | Zbl
[24] Wang, Z.: Passivity control of nonlinear electromechanical transducer chaotic system. Control Theory Appl. 28 (2011), 1036-1040.
[25] Wang, Z., Li, Y. X., Xi, X. J., Lü, L.: Heteoclinic orbit and backstepping control of a 3D chaotic system. Acta Phys. Sin. 60 (2011), 010513.
[26] Wang, Z., Sun, W., Wei, Z. C., Xi, X. J.: Dynamics analysis and robust modified function projective synchronization of Sprott E system with quadratic perturbation. Kybernetika 50 (2014), 616-631. | DOI | MR | Zbl
[27] Wang, Z., Wei, Z. C., Xi, X. J., Li, Y. X.: Dynamics of a 3D autonomous quadratic system with an invariant algebraic surface. Nonlinear Dynamics 77 (2014), 1503-1518. | DOI | MR | Zbl
[28] Wei, Z. C., Yang, Q. G.: Controlling the diffusionless Lorenz equations with periodic parametric perturbation. Comput. Math. Appl. 58 (2009), 1979-1987. | DOI | MR | Zbl
[29] Wei, Z. C., Zhang, W., Wang, Z., Yao, M. H.: Hidden attractors and dynamical behaviors in an extended Rikitake system. Int. J. Bifurcation and Chaos 22 (2015), 1550028. | DOI | MR | Zbl
[30] Wu, Z. M., Xie, J. Y., Fang, Y. Y., Xu, Z. Y.: Controlling chaos with periodic parametric perturbations in Lorenz system. Chaos Solitons and Fractals 32 (2007), 104-112. | DOI | MR | Zbl
[31] Wiggins, S., Holmes, P.: Homiclinic orbits in slowly varying oscillators. SIAM J. Math. Anal. 18 (1987), 612-629. | DOI | MR
[32] Wiggins, S., Holmes, P.: Periodic orbits in slowly varying oscillators. SIAM J. Math. Anal. 18 (1987), 592-611. | DOI | MR | Zbl
[33] Yang, Q. G., Chen, G. R.: A chaotic system with one saddle and two stable node-foci. Int. J. Bifur. Chaos 18 (2008), 1393-1414. | DOI | MR | Zbl
Cité par Sources :