Periodic parametric perturbation control for a 3D autonomous chaotic system and its dynamics at infinity
Kybernetika, Tome 53 (2017) no. 2, pp. 354-369
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Periodic parametric perturbation control and dynamics at infinity for a 3D autonomous quadratic chaotic system are studied in this paper. Using the Melnikov's method, the existence of homoclinic orbits, oscillating periodic orbits and rotating periodic orbits are discussed after transferring the 3D autonomous chaotic system to a slowly varying oscillator. Moreover, the parameter bifurcation conditions of these orbits are obtained. In order to study the global structure, the dynamics at infinity of this system are analyzed through Poincaré compactification. The simulation results demonstrate feasibility of periodic parametric perturbation control technology and correctness of the theoretical results.
Periodic parametric perturbation control and dynamics at infinity for a 3D autonomous quadratic chaotic system are studied in this paper. Using the Melnikov's method, the existence of homoclinic orbits, oscillating periodic orbits and rotating periodic orbits are discussed after transferring the 3D autonomous chaotic system to a slowly varying oscillator. Moreover, the parameter bifurcation conditions of these orbits are obtained. In order to study the global structure, the dynamics at infinity of this system are analyzed through Poincaré compactification. The simulation results demonstrate feasibility of periodic parametric perturbation control technology and correctness of the theoretical results.
DOI : 10.14736/kyb-2017-2-0354
Classification : 34D20, 34H10, 34H20
Keywords: Hamiltonian system; Melnikov's methods; homoclinic orbits; periodic orbits; periodic parametric perturbation; dynamics at infinity
@article{10_14736_kyb_2017_2_0354,
     author = {Wang, Zhen and Sun, Wei and Wei, Zhouchao and Zhang, Shanwen},
     title = {Periodic parametric perturbation control for a {3D} autonomous chaotic system and its dynamics at infinity},
     journal = {Kybernetika},
     pages = {354--369},
     year = {2017},
     volume = {53},
     number = {2},
     doi = {10.14736/kyb-2017-2-0354},
     mrnumber = {3661356},
     zbl = {06770172},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0354/}
}
TY  - JOUR
AU  - Wang, Zhen
AU  - Sun, Wei
AU  - Wei, Zhouchao
AU  - Zhang, Shanwen
TI  - Periodic parametric perturbation control for a 3D autonomous chaotic system and its dynamics at infinity
JO  - Kybernetika
PY  - 2017
SP  - 354
EP  - 369
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0354/
DO  - 10.14736/kyb-2017-2-0354
LA  - en
ID  - 10_14736_kyb_2017_2_0354
ER  - 
%0 Journal Article
%A Wang, Zhen
%A Sun, Wei
%A Wei, Zhouchao
%A Zhang, Shanwen
%T Periodic parametric perturbation control for a 3D autonomous chaotic system and its dynamics at infinity
%J Kybernetika
%D 2017
%P 354-369
%V 53
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0354/
%R 10.14736/kyb-2017-2-0354
%G en
%F 10_14736_kyb_2017_2_0354
Wang, Zhen; Sun, Wei; Wei, Zhouchao; Zhang, Shanwen. Periodic parametric perturbation control for a 3D autonomous chaotic system and its dynamics at infinity. Kybernetika, Tome 53 (2017) no. 2, pp. 354-369. doi: 10.14736/kyb-2017-2-0354

[1] Chen, Y., Cao, L., Sun, M.: Robust midified function projective synchronization in network with unknown parameters and mismatch parameters. Int. J. Nonlinear Sci. 10 (2010), 17-23. | MR

[2] Čelikovský, S., Vaněček, A.: Bilinear systems and chaos. Kybernetika 30 (1994), 403-424. | MR | Zbl

[3] Dumortier, F., Llibre, J., Artes, J. C.: Qualitative Theory of Planar Differential Systems. Springer, Berlin 2006. | MR | Zbl

[4] Fang, Y. Y., Xu, Z. Y., Cai, C. H.: Melnikov analysis of feedback control of chaotic dynamics system. J. Wuxi University of Light Industry 20 (2001), 624-629.

[5] Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin 2002. | DOI | MR | Zbl

[6] Jafari, S., Sprott, J. C.: Simple chaotic flows with a line equilibrium. Chaos, Solitons and Fractals 57 (2013), 79-84. | DOI | MR | Zbl

[7] Kuznetsov, A. P., Kuznetsov, S. P., Stankevich, N. V.: A simple autonomous quasiperiodic self-oscillator. Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 1676-1681. | DOI

[8] Li, J. B., Zhao, X. H., Liu, Z. R.: Theory of Generalized Hamiltonian System and its Applications. Science Press, Beijing 2007.

[9] Li, Y., Wu, X. Q., Lu, J. A., Lü, J. H.: Synchronizability of duplex networks. IEEE Trans. Circuits and Systems II 63 (2016), 206-210. | DOI

[10] Liu, K. X., Wu, L. L., Lü, J. H., Zhu, H. H.: Finite-time adaptive consensus of a class of multi-agent systems. Science China-Technological Sciences 59 (2016), 22-32. | DOI

[11] Liu, Y. J.: Analysis of global dynamics in an unusual 3D chaotic system. Nonlinear Dyn. 70 (2012), 2203-2212. | DOI | MR | Zbl

[12] Liu, Z. R.: Perturbation Criteria for Chaos. Shanghai Scientific and Technological Education Publishing House, Shanghai 1994.

[13] Lorenz, E. N.: Deterministic non-periodic flow. J. Atmospheric Sci. 20 (1963), 130-141. | DOI

[14] Lü, J. H., Chen, G. R.: A new chaotic attractor coined. Int. J. Bifurcation and Chaos 12 (2002), 659-661. | DOI | MR | Zbl

[15] Mirus, K. A., Sprott, J. C.: Controlling chaos in a high dimensional systems with periodic parametric perturbations. Phys. Lett. A 254 (1999), 275-278. | DOI

[16] Mirus, K. A., Sprott, J. C.: Controlling chaos in low- and high-dimensional systems with periodic parametric perturbations. Phys. Rev. E 59 (1999), 5313-5324. | DOI

[17] Shen, C. W., Yu, S. M., Chen, G. R.: Constructing hyperchaotic systems at will. Int. J. Circuit Theory Appl. 43 (2015), 2039-2056. | DOI

[18] Sprott, J. C.: Some simple chaotic flows. Phys. Rev. E {\mi50} (1994), 647-650. | DOI | MR

[19] Tan, S. L., Lü, J. H., Hill, D. J.: Towards a theoretical framework for analysis and intervention of random drift on general networks. IEEE Trans. Automat. Control 60 (2015), 576-581. | DOI | MR

[20] Tigan, G.: Analysis of a dynamical system derived from the Lorenz system. Scientific Bull. Politehnica University of Timisoara 50 (2005), 61-72. | MR | Zbl

[21] Wang, Q. X., Yu, S. M., Li, C. Q., Lü, J. H., Fang, X. L., Bahi, J. M.: Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems. IEEE Trans. Circuits and Systems I 63 (2016), 401-412. | DOI | MR

[22] Wang, X., Chen, G. R.: Constructing a chaotic system with any number of equilibria. Nonlinear Dynamics 71 (2013), 429-436. | DOI | MR

[23] Wang, Z.: Existence of attractor and control of a 3D differential system. Nonlinear Dynmics 60 (2010), 369-373. | DOI | MR | Zbl

[24] Wang, Z.: Passivity control of nonlinear electromechanical transducer chaotic system. Control Theory Appl. 28 (2011), 1036-1040.

[25] Wang, Z., Li, Y. X., Xi, X. J., Lü, L.: Heteoclinic orbit and backstepping control of a 3D chaotic system. Acta Phys. Sin. 60 (2011), 010513.

[26] Wang, Z., Sun, W., Wei, Z. C., Xi, X. J.: Dynamics analysis and robust modified function projective synchronization of Sprott E system with quadratic perturbation. Kybernetika 50 (2014), 616-631. | DOI | MR | Zbl

[27] Wang, Z., Wei, Z. C., Xi, X. J., Li, Y. X.: Dynamics of a 3D autonomous quadratic system with an invariant algebraic surface. Nonlinear Dynamics 77 (2014), 1503-1518. | DOI | MR | Zbl

[28] Wei, Z. C., Yang, Q. G.: Controlling the diffusionless Lorenz equations with periodic parametric perturbation. Comput. Math. Appl. 58 (2009), 1979-1987. | DOI | MR | Zbl

[29] Wei, Z. C., Zhang, W., Wang, Z., Yao, M. H.: Hidden attractors and dynamical behaviors in an extended Rikitake system. Int. J. Bifurcation and Chaos 22 (2015), 1550028. | DOI | MR | Zbl

[30] Wu, Z. M., Xie, J. Y., Fang, Y. Y., Xu, Z. Y.: Controlling chaos with periodic parametric perturbations in Lorenz system. Chaos Solitons and Fractals 32 (2007), 104-112. | DOI | MR | Zbl

[31] Wiggins, S., Holmes, P.: Homiclinic orbits in slowly varying oscillators. SIAM J. Math. Anal. 18 (1987), 612-629. | DOI | MR

[32] Wiggins, S., Holmes, P.: Periodic orbits in slowly varying oscillators. SIAM J. Math. Anal. 18 (1987), 592-611. | DOI | MR | Zbl

[33] Yang, Q. G., Chen, G. R.: A chaotic system with one saddle and two stable node-foci. Int. J. Bifur. Chaos 18 (2008), 1393-1414. | DOI | MR | Zbl

Cité par Sources :