New criterion for asymptotic stability of time-varying dynamical systems
Kybernetika, Tome 53 (2017) no. 2, pp. 331-353 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we establish some new sufficient conditions for uniform global asymptotic stability for certain classes of nonlinear systems. Lyapunov approach is applied to study exponential stability and stabilization of time-varying systems. Sufficient conditions are obtained based on new nonlinear differential inequalities. Moreover, some examples are treated and an application to control systems is given.
In this paper, we establish some new sufficient conditions for uniform global asymptotic stability for certain classes of nonlinear systems. Lyapunov approach is applied to study exponential stability and stabilization of time-varying systems. Sufficient conditions are obtained based on new nonlinear differential inequalities. Moreover, some examples are treated and an application to control systems is given.
DOI : 10.14736/kyb-2017-2-0331
Classification : 93Cxx, 93Dxx
Keywords: nonlinear time-varying systems; asymptotic stability; stabilization
@article{10_14736_kyb_2017_2_0331,
     author = {Ghrissi, Taoufik and Hammami, Mohamed Ali and Hammi, Mekki and Mabrouk, Mohamed},
     title = {New criterion for asymptotic stability of time-varying dynamical systems},
     journal = {Kybernetika},
     pages = {331--353},
     year = {2017},
     volume = {53},
     number = {2},
     doi = {10.14736/kyb-2017-2-0331},
     mrnumber = {3661355},
     zbl = {06770171},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0331/}
}
TY  - JOUR
AU  - Ghrissi, Taoufik
AU  - Hammami, Mohamed Ali
AU  - Hammi, Mekki
AU  - Mabrouk, Mohamed
TI  - New criterion for asymptotic stability of time-varying dynamical systems
JO  - Kybernetika
PY  - 2017
SP  - 331
EP  - 353
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0331/
DO  - 10.14736/kyb-2017-2-0331
LA  - en
ID  - 10_14736_kyb_2017_2_0331
ER  - 
%0 Journal Article
%A Ghrissi, Taoufik
%A Hammami, Mohamed Ali
%A Hammi, Mekki
%A Mabrouk, Mohamed
%T New criterion for asymptotic stability of time-varying dynamical systems
%J Kybernetika
%D 2017
%P 331-353
%V 53
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0331/
%R 10.14736/kyb-2017-2-0331
%G en
%F 10_14736_kyb_2017_2_0331
Ghrissi, Taoufik; Hammami, Mohamed Ali; Hammi, Mekki; Mabrouk, Mohamed. New criterion for asymptotic stability of time-varying dynamical systems. Kybernetika, Tome 53 (2017) no. 2, pp. 331-353. doi: 10.14736/kyb-2017-2-0331

[1] Aeyels, O., Penteman, P.: A new asymptotic stability cretirion for non linear time varying differential equations. IEEE Trans. Automat. Control 43 (1998), 968-971. | DOI | MR

[2] Bay, N. S., Phat, V. N.: Stability of nonlinear difference time varying systems with delays. Vietnam J. Math. 4 (1999), 129-136.

[3] BenAbdallah, A., Ellouze, I., Hammami, M. A.: Practical stability of nonlinear time-varying cascade systems. J. Dynamical Control Systems 15 (2009), 1, 45-62. | DOI | MR | Zbl

[4] Corless, M: Guaranteed rates of exponential convergence for uncertain systems. J. Optim. Theory Appl. 64 (1990), 3, 481-494. | DOI | MR

[5] Corless, M., Leitmann, G.: Controller design for uncertain systems via Lyapunov functions. In: Proc. 1988 American Control Conference, Atlanta 1988.

[6] Garofalo, F., Leitmann, G.: Guaranteeing ultimate boundedness and exponential rate of convergence for a class of nominally linear uncertain systems. J. Dynamic Systems, Measurement, and Control 111 (1989), 584-588. | DOI | Zbl

[7] Hahn, W.: Stability of Motion. Springer, New York 1967. | DOI | MR | Zbl

[8] A.Hammami, M.: On the stability of nonlinear control systems with uncertainty. J. Dynamical Control Systems 7 (2001), 2, 171-179. | DOI | MR

[9] Hammi, M., Hammami, M. A.: Non-linear integral inequalities and applications to asymptotic stability. IMA J. Math. Control Inform. 32 (2015), 4, 717-736. | DOI | MR | Zbl

[10] Hammi, M., A.Hammami, M.: Gronwall-Bellman type integral inequalities and applications to global uniform asymptotic stability. CUBO Math. J. 17 (2015), 3, 53-70. | DOI | MR

[11] Khalil, H.: Nonlinear Systems. Prentice Hall 2002. | Zbl

[12] Lakshmikantham, V., Leela, S., Martynuk, A. A.: Practical Stability of Nonlinear Systems. World Scientific Publishing Co. Pte. Ltd. 1990. | DOI | MR

[13] Lü, J., Chen, G.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Automat. Control. 50 (2005), 6, 841-846. | DOI | MR

[14] Liu, K., Zhu, H., Lü, J.: Bridging the gap between transmission noise and sampled data for robust consensus of multi-agent systems. IEEE Trans. Circuits and Systems I 62 (2015), 7, 1836-1844. | DOI | MR

[15] Liu, K., Wu, L., Lü, J., Zhu, H.: Finite-time adaptive consensus of a class of multi-agent systems. Science China Technol. Sci. 59 (2016), 1, 22-32. | DOI

[16] Li, Y., Wu, X., Lu, J., Lü, J.: Synchronizability of duplex networks. IEEE Trans. Circuits and Systems II - Express Briefs 63 (2016), 2, 206-210. | DOI

[17] Lin, W., Pongvuthithum, R.: Global satbilization of cascade system by ${C}^0$ partial-state feedback. IEEE Trans. Automat. Control 47 (2002), 1356-1362. | DOI | MR

[18] Pantely, E., Loria, A.: On global uniform asymptotic stability of nonlinear time-varying systems in cascade. System Control Lett. 33 (1998), 131-138. | DOI | MR

[19] Pham, Q. C., Tabareau, N., Slotine, J. J. E.: A contraction theory appoach to stochastic incremental stability. IEEE Trans. Automat. Control 54 (2009), 4, 816-820. | DOI | MR

[20] Phat, V. N.: Global stabilization for linear continuous time-varying systems. Appl. Math. Comput. 175 (2006), 1730-1743. | DOI | MR | Zbl

[21] Martynyuk, A. A.: Stability in the models of real world phenomena. Nonlinear Dyn. Syst. Theory 11 (2011), 1, 7-52. | MR | Zbl

[22] Mu, X., Cheng, D.: On stability and stabilization of time-varying nonlinear control systems. Asian J. Control 7 (2005), 3, 244-255. | DOI

[23] Pata, V.: Uniform estimates of Gronwall types. J. Math. Anal. Appl. xx (2011), 264-270. | DOI | MR

[24] Zubov, V. I.: Methods of A. M. Lyapunov and Their Applications. P. Noordhoff, Groningen, 1964. | MR

Cité par Sources :