Keywords: nonlinear time-varying systems; asymptotic stability; stabilization
@article{10_14736_kyb_2017_2_0331,
author = {Ghrissi, Taoufik and Hammami, Mohamed Ali and Hammi, Mekki and Mabrouk, Mohamed},
title = {New criterion for asymptotic stability of time-varying dynamical systems},
journal = {Kybernetika},
pages = {331--353},
year = {2017},
volume = {53},
number = {2},
doi = {10.14736/kyb-2017-2-0331},
mrnumber = {3661355},
zbl = {06770171},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0331/}
}
TY - JOUR AU - Ghrissi, Taoufik AU - Hammami, Mohamed Ali AU - Hammi, Mekki AU - Mabrouk, Mohamed TI - New criterion for asymptotic stability of time-varying dynamical systems JO - Kybernetika PY - 2017 SP - 331 EP - 353 VL - 53 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0331/ DO - 10.14736/kyb-2017-2-0331 LA - en ID - 10_14736_kyb_2017_2_0331 ER -
%0 Journal Article %A Ghrissi, Taoufik %A Hammami, Mohamed Ali %A Hammi, Mekki %A Mabrouk, Mohamed %T New criterion for asymptotic stability of time-varying dynamical systems %J Kybernetika %D 2017 %P 331-353 %V 53 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0331/ %R 10.14736/kyb-2017-2-0331 %G en %F 10_14736_kyb_2017_2_0331
Ghrissi, Taoufik; Hammami, Mohamed Ali; Hammi, Mekki; Mabrouk, Mohamed. New criterion for asymptotic stability of time-varying dynamical systems. Kybernetika, Tome 53 (2017) no. 2, pp. 331-353. doi: 10.14736/kyb-2017-2-0331
[1] Aeyels, O., Penteman, P.: A new asymptotic stability cretirion for non linear time varying differential equations. IEEE Trans. Automat. Control 43 (1998), 968-971. | DOI | MR
[2] Bay, N. S., Phat, V. N.: Stability of nonlinear difference time varying systems with delays. Vietnam J. Math. 4 (1999), 129-136.
[3] BenAbdallah, A., Ellouze, I., Hammami, M. A.: Practical stability of nonlinear time-varying cascade systems. J. Dynamical Control Systems 15 (2009), 1, 45-62. | DOI | MR | Zbl
[4] Corless, M: Guaranteed rates of exponential convergence for uncertain systems. J. Optim. Theory Appl. 64 (1990), 3, 481-494. | DOI | MR
[5] Corless, M., Leitmann, G.: Controller design for uncertain systems via Lyapunov functions. In: Proc. 1988 American Control Conference, Atlanta 1988.
[6] Garofalo, F., Leitmann, G.: Guaranteeing ultimate boundedness and exponential rate of convergence for a class of nominally linear uncertain systems. J. Dynamic Systems, Measurement, and Control 111 (1989), 584-588. | DOI | Zbl
[7] Hahn, W.: Stability of Motion. Springer, New York 1967. | DOI | MR | Zbl
[8] A.Hammami, M.: On the stability of nonlinear control systems with uncertainty. J. Dynamical Control Systems 7 (2001), 2, 171-179. | DOI | MR
[9] Hammi, M., Hammami, M. A.: Non-linear integral inequalities and applications to asymptotic stability. IMA J. Math. Control Inform. 32 (2015), 4, 717-736. | DOI | MR | Zbl
[10] Hammi, M., A.Hammami, M.: Gronwall-Bellman type integral inequalities and applications to global uniform asymptotic stability. CUBO Math. J. 17 (2015), 3, 53-70. | DOI | MR
[11] Khalil, H.: Nonlinear Systems. Prentice Hall 2002. | Zbl
[12] Lakshmikantham, V., Leela, S., Martynuk, A. A.: Practical Stability of Nonlinear Systems. World Scientific Publishing Co. Pte. Ltd. 1990. | DOI | MR
[13] Lü, J., Chen, G.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Automat. Control. 50 (2005), 6, 841-846. | DOI | MR
[14] Liu, K., Zhu, H., Lü, J.: Bridging the gap between transmission noise and sampled data for robust consensus of multi-agent systems. IEEE Trans. Circuits and Systems I 62 (2015), 7, 1836-1844. | DOI | MR
[15] Liu, K., Wu, L., Lü, J., Zhu, H.: Finite-time adaptive consensus of a class of multi-agent systems. Science China Technol. Sci. 59 (2016), 1, 22-32. | DOI
[16] Li, Y., Wu, X., Lu, J., Lü, J.: Synchronizability of duplex networks. IEEE Trans. Circuits and Systems II - Express Briefs 63 (2016), 2, 206-210. | DOI
[17] Lin, W., Pongvuthithum, R.: Global satbilization of cascade system by ${C}^0$ partial-state feedback. IEEE Trans. Automat. Control 47 (2002), 1356-1362. | DOI | MR
[18] Pantely, E., Loria, A.: On global uniform asymptotic stability of nonlinear time-varying systems in cascade. System Control Lett. 33 (1998), 131-138. | DOI | MR
[19] Pham, Q. C., Tabareau, N., Slotine, J. J. E.: A contraction theory appoach to stochastic incremental stability. IEEE Trans. Automat. Control 54 (2009), 4, 816-820. | DOI | MR
[20] Phat, V. N.: Global stabilization for linear continuous time-varying systems. Appl. Math. Comput. 175 (2006), 1730-1743. | DOI | MR | Zbl
[21] Martynyuk, A. A.: Stability in the models of real world phenomena. Nonlinear Dyn. Syst. Theory 11 (2011), 1, 7-52. | MR | Zbl
[22] Mu, X., Cheng, D.: On stability and stabilization of time-varying nonlinear control systems. Asian J. Control 7 (2005), 3, 244-255. | DOI
[23] Pata, V.: Uniform estimates of Gronwall types. J. Math. Anal. Appl. xx (2011), 264-270. | DOI | MR
[24] Zubov, V. I.: Methods of A. M. Lyapunov and Their Applications. P. Noordhoff, Groningen, 1964. | MR
Cité par Sources :