Improving the performance of semiglobal output controllers for nonlinear systems
Kybernetika, Tome 53 (2017) no. 2, pp. 296-330 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a large class of nonlinear control systems, the main drawback of a semiglobal stabilizing output feedback controllers $(\mathcal{U}_R)_{R>0}$ with increasing regions of attraction $(\Omega_R)_{R>0}$ is that, when the region of attraction $\Omega_R$ is large, the convergence of solutions of the closed-loop system to the origin becomes slow. To improve the performance of a semiglobal controller, we look for a new feedback control law that preserves the semiglobal stability of the nonlinear system under consideration and that is equal to some "fast" controller $\mathcal{U}_{R_0}$ on a neighborhood of the origin. Under an input-output-to-state stability (IOSS) assumption, we propose a new semiglobal stabilizing hybrid feedback controller that unifies a "slow" controller that has a large region of attraction with a "fast" controller having a small region of attraction. This unification is inspired from the elegant hybrid unification of a local controller with a global one given in [21]. Moreover, this unification is different from the recent result [24], since in the cited paper the objective is just the stabilization; whereas in our study, the objective is the stabilization with high performance. Finally, we illustrate our main result by means of two numerical examples.
For a large class of nonlinear control systems, the main drawback of a semiglobal stabilizing output feedback controllers $(\mathcal{U}_R)_{R>0}$ with increasing regions of attraction $(\Omega_R)_{R>0}$ is that, when the region of attraction $\Omega_R$ is large, the convergence of solutions of the closed-loop system to the origin becomes slow. To improve the performance of a semiglobal controller, we look for a new feedback control law that preserves the semiglobal stability of the nonlinear system under consideration and that is equal to some "fast" controller $\mathcal{U}_{R_0}$ on a neighborhood of the origin. Under an input-output-to-state stability (IOSS) assumption, we propose a new semiglobal stabilizing hybrid feedback controller that unifies a "slow" controller that has a large region of attraction with a "fast" controller having a small region of attraction. This unification is inspired from the elegant hybrid unification of a local controller with a global one given in [21]. Moreover, this unification is different from the recent result [24], since in the cited paper the objective is just the stabilization; whereas in our study, the objective is the stabilization with high performance. Finally, we illustrate our main result by means of two numerical examples.
DOI : 10.14736/kyb-2017-2-0296
Classification : 93C10, 93D15
Keywords: nonlinear system; hybrid output feedback; semiglobal output stabilization; local performance
@article{10_14736_kyb_2017_2_0296,
     author = {Benabdallah, Abdallah and Hdidi, Walid},
     title = {Improving the performance of semiglobal output controllers for nonlinear systems},
     journal = {Kybernetika},
     pages = {296--330},
     year = {2017},
     volume = {53},
     number = {2},
     doi = {10.14736/kyb-2017-2-0296},
     mrnumber = {3661354},
     zbl = {06770170},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0296/}
}
TY  - JOUR
AU  - Benabdallah, Abdallah
AU  - Hdidi, Walid
TI  - Improving the performance of semiglobal output controllers for nonlinear systems
JO  - Kybernetika
PY  - 2017
SP  - 296
EP  - 330
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0296/
DO  - 10.14736/kyb-2017-2-0296
LA  - en
ID  - 10_14736_kyb_2017_2_0296
ER  - 
%0 Journal Article
%A Benabdallah, Abdallah
%A Hdidi, Walid
%T Improving the performance of semiglobal output controllers for nonlinear systems
%J Kybernetika
%D 2017
%P 296-330
%V 53
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0296/
%R 10.14736/kyb-2017-2-0296
%G en
%F 10_14736_kyb_2017_2_0296
Benabdallah, Abdallah; Hdidi, Walid. Improving the performance of semiglobal output controllers for nonlinear systems. Kybernetika, Tome 53 (2017) no. 2, pp. 296-330. doi: 10.14736/kyb-2017-2-0296

[1] Ahmed-Ali, T., Assche, V. Van, Massieu, J., Dorleans, P.: Continuous-discrete observer for state affine systems with sampled and delayed measurements. IEEE Trans. Automat. Control 58 (2013), 4, 1085-1091. | DOI | MR

[2] Ahmed-Ali, T., Karafyllis, I., Lamnabhi-Lagarrigue, F.: Global exponential sampled-data observers for nonlinear systems with delayed measurements. System Control Lett. 62 (2013), 7, 539-549. | DOI | MR | Zbl

[3] Andrieu, V., Praly, L.: A unifying point of view on output feedback designs for global asymptotic stabilization. Automatica 45 (2009), 8, 1789-1798. | DOI | MR | Zbl

[4] Efimov, D. V.: Uniting global and local controllers under acting disturbances. Automatica 42 (2006), 489-495. | DOI | MR | Zbl

[5] Efimov, D. V., Loria, A., Panteley, E.: Robust output stabilization: improving performance via supervisory control. Int. J. Robust Nonlinear Control 21 (2011), 10, 1219-1236. | DOI | MR | Zbl

[6] Freeman, R., Kokotovic, P.: Robust Nonlinear Control Design: State-Space and Lyapunov Techniques. Birkhauser, Boston 1996. | DOI | MR | Zbl

[7] Gauthier, J., Hammouri, H., Othman, S.: A simple observer for nonlinear systems: Application to bioreactor. IEEE Trans. Automat. Control 37 (1992), 875-880. | DOI | MR

[8] Goebel, R., Sanfelice, R. G., Teel, A. R.: Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton University Press 2012. | MR | Zbl

[9] Geobel, R., Teel, A. R.: Solutions to hybrid inclusions via set and graphical convergence with stability theory applications. Automatica 42 (2006), 573-587. | DOI | MR

[10] Isidori, A.: Nonlinear Control Systems. (Third edition). Springer Verlag, London 1995. | DOI | MR

[11] Jiang, Z. P.: Discussion on the paper "Global asymptotic output feedback stabilization of feedforward systems", by F. Mazenc and J. C. Vivalda. Europ. J. Control 8 (2002), 6, 531-534. | DOI

[12] Jouan, P., Gauthier, J.: Finite singularities of nonlinear systems, output stabilization, observability and observers. J. Dynamical Control Systems 2 (1996), 2, 255-288. | DOI | MR | Zbl

[13] Khalil, H., Esfandiari, F.: Semiglobal stabilization of a class of nonlinear systems using output feedback. IEEE Trans. Automat. Control 38 (1993), 2, 1412-1415. | DOI | MR | Zbl

[14] Krichman, M., Sontag, E., Wang, Y.: Input-output-to-state stability. SIAM J. Control Optim. 39 (2001), 1874-1928. | DOI | MR | Zbl

[15] Marino, R., Tomei, P.: A class of globally output feedback stabilizable nonlinear nonminimum phase systems. IEEE Trans. Automat. Control 50 (2005), 2097-2101. | DOI | MR

[16] Mazenc, F., Vivalda, J. C.: Global asymptotic output feedback stabilization of feedforward systems. Europ. J. Control 8 (2002), 6, 519-530. | DOI | Zbl

[17] Pan, Z., Ezal, K., Krener, A. J., Kokotovic, P. V.: Backstepping design with local optimality matching. IEEE Trans. Automat. Control 46 (2001), 7, 1014-1027. | DOI | MR | Zbl

[18] Praly, L.: Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate. IEEE Trans. Automat. Control 48 (2003), 12, 1103-1108. | DOI | MR

[19] Praly, L., Teel, A. R.: Tools for semiglobal stabilization by partial state and output feedback. SIAM J. Control Optim. 33 (1995), 5, 1443-1488. | DOI | MR | Zbl

[20] Prieur, C., Goebel, R., Teel, A. R.: Hybrid feedback control and robust stabilization of nonlinear systems. IEEE Trans. Automat. Control 52 (2007), 11, 2103-2117. | DOI | MR

[21] Prieur, C., Teel, A. R.: Uniting local and global output feedback controllers. IEEE Trans. Automat. Control 56 (2011), 1636-1649. | DOI | MR

[22] Qian, C., Lin, W.: Output feedback control of a class of nonlinear systems: a nonseparation principle paradigm. IEEE Trans. Automat. Control 47 (2002), 10, 1710-1715. | DOI | MR

[23] Sanfelice, R. G., Goebel, R.: Generalized solutions to hybrid dynamical systems. ESAIM: Control, Optimisation and Calculus of Variations 14 (2008), 699-724. | DOI | MR | Zbl

[24] Sanfelice, R. G., Prieur, C.: Robust supervisory control for uniting two output-feedback hybrid controllers with different objectives. Automatica 49 (2013), 1958-1969. | DOI | MR

[25] Shen, Y., Zhang, D., Huang, Y., Liu, Y.: Global $\mathcal K$-exponential stabilization of a class of nonlinear networked control systems. Int. J. Systems Sci. 47 (2016), 15, 3545-3553. | DOI | MR

[26] Shen, Y., Zhang, D., Xia, X.: Continuous output feedback stabilization for nonlinear systems based on sampled and delayed output measurements. Int. J. Robust. Nonlinear Control 26 (2016), 14, 3075-3087. | DOI | MR | Zbl

[27] Sontag, E. D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems. (Second edition). Springer, New York 1998. | DOI | MR

[28] Sontag, E. D., Wang, Y.: Output-to-state stability and detectability of nonlinear systems. Systems Control Lett. 29 (1997), 5, 279-290. | DOI | MR | Zbl

[29] Tarbouriech, S., Garcia, G., Jr., J. M. G. da Silva, Queinnec, I.: Stability and Stabilization of Linear Systems with Saturating Actuators. Springer-Verlag, London 2011. | DOI | MR | Zbl

[30] Teel, A. R., Kapoor, N.: Uniting global and local controllers. In: European Control Conference, Brussels 1997.

Cité par Sources :