A subcopula based dependence measure
Kybernetika, Tome 53 (2017) no. 2, pp. 231-243 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A dependence measure for arbitrary type pairs of random variables is proposed and analyzed, which in the particular case where both random variables are continuous turns out to be a concordance measure. Also, a sample version of the proposed dependence measure based on the empirical subcopula is provided, along with an R package to perform the corresponding calculations.
A dependence measure for arbitrary type pairs of random variables is proposed and analyzed, which in the particular case where both random variables are continuous turns out to be a concordance measure. Also, a sample version of the proposed dependence measure based on the empirical subcopula is provided, along with an R package to perform the corresponding calculations.
DOI : 10.14736/kyb-2017-2-0231
Classification : 62H20
Keywords: subcopula; dependence; concordance
@article{10_14736_kyb_2017_2_0231,
     author = {Erdely, Arturo},
     title = {A subcopula based dependence measure},
     journal = {Kybernetika},
     pages = {231--243},
     year = {2017},
     volume = {53},
     number = {2},
     doi = {10.14736/kyb-2017-2-0231},
     mrnumber = {3661350},
     zbl = {06770166},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0231/}
}
TY  - JOUR
AU  - Erdely, Arturo
TI  - A subcopula based dependence measure
JO  - Kybernetika
PY  - 2017
SP  - 231
EP  - 243
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0231/
DO  - 10.14736/kyb-2017-2-0231
LA  - en
ID  - 10_14736_kyb_2017_2_0231
ER  - 
%0 Journal Article
%A Erdely, Arturo
%T A subcopula based dependence measure
%J Kybernetika
%D 2017
%P 231-243
%V 53
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0231/
%R 10.14736/kyb-2017-2-0231
%G en
%F 10_14736_kyb_2017_2_0231
Erdely, Arturo. A subcopula based dependence measure. Kybernetika, Tome 53 (2017) no. 2, pp. 231-243. doi: 10.14736/kyb-2017-2-0231

[1] Cifarelli, D. M., Conti, P. L., Regazzini, E.: On the asymptotic distribution of a general measure of monotone dependence. Ann. Statist. 24 (1996), 1386-1399. | DOI | MR | Zbl

[2] Denuit, M., Lambert, P.: Constraints on concordance measures in bivariate discrete data. J. Mult. Anal. 93 (2005), 40-57. | DOI | MR | Zbl

[3] Durante, F., Sempi, C.: Principles of Copula Theory. CRC Press, Boca Raton 2016. | DOI | MR

[4] Erdely, A.: subcopem2D: Bivariate Empirical Copula. R package version 1.2 (2017), URL DOI 

[5] Genest, C., Nešlehová, J.: A primer on copulas for count data. Astin Bull. 37 (2007), 475-515. | DOI | MR | Zbl

[6] Genest, C., Nešlehová, J., Rémillard, B.: On the empirical multilinear copula process for count data. Bernoulli 20 (2014), 1344-1371. | DOI | MR

[7] Hofert, M., Kojadinovic, I., Maechler, M., Yan, J.: copula: Multivariate Dependence with Copulas. R package version 0.999-16 (2017), URL DOI 

[8] Lehmann, E. L.: Some concepts of dependence. Ann. Math. Statist. 37 (1966), 1137-1153. | DOI | MR | Zbl

[9] Li, X., Mikusiński, P., Sherwood, H., Taylor, M. D: On approximation of copulas. In: Distributions with given marginals and moment problems (V. Beneš and J. Štěpán, eds.), Kluwer, Dordrecht 1997, pp. 107-116. | DOI | MR | Zbl

[10] Nelsen, R. B.: An Introduction to Copulas. Springer, New York 2006. | DOI | MR | Zbl

[11] Nešlehová, J.: On rank correlation measures for non-continuous random variables. J. Mult. Anal. 98 (2007), 544-567. | DOI | MR | Zbl

[12] Team, R Core: R: A language and environment for statistical computing. R Foundation for Statistical Computing (Vienna), URL DOI 

[13] Scarsini, M.: On measures of concordance. Stochastica 8 (1984), 201-218. | MR | Zbl

[14] Schweizer, B., Wolff, E. F.: On nonparametric measures of dependence for random variables. Ann. Statist. 9 (1981), 879-885. | DOI | MR | Zbl

[15] Sklar, A.: Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231. | MR

Cité par Sources :