On weighted U-statistics for stationary random fields
Kybernetika, Tome 53 (2017) no. 2, pp. 220-230
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of this paper is to introduce a central limit theorem and an invariance principle for weighted U-statistics based on stationary random fields. Hsing and Wu (2004) in their paper introduced some asymptotic results for weighted U-statistics based on stationary processes. We show that it is possible also to extend their results for weighted $U$-statistics based on stationary random fields.
The aim of this paper is to introduce a central limit theorem and an invariance principle for weighted U-statistics based on stationary random fields. Hsing and Wu (2004) in their paper introduced some asymptotic results for weighted U-statistics based on stationary processes. We show that it is possible also to extend their results for weighted $U$-statistics based on stationary random fields.
DOI : 10.14736/kyb-2017-2-0220
Classification : 60F05
Keywords: limit theorem; U-statistics; random fields
@article{10_14736_kyb_2017_2_0220,
     author = {Klicnarov\'a, Jana},
     title = {On weighted {U-statistics} for stationary random fields},
     journal = {Kybernetika},
     pages = {220--230},
     year = {2017},
     volume = {53},
     number = {2},
     doi = {10.14736/kyb-2017-2-0220},
     mrnumber = {3661349},
     zbl = {06770165},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0220/}
}
TY  - JOUR
AU  - Klicnarová, Jana
TI  - On weighted U-statistics for stationary random fields
JO  - Kybernetika
PY  - 2017
SP  - 220
EP  - 230
VL  - 53
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0220/
DO  - 10.14736/kyb-2017-2-0220
LA  - en
ID  - 10_14736_kyb_2017_2_0220
ER  - 
%0 Journal Article
%A Klicnarová, Jana
%T On weighted U-statistics for stationary random fields
%J Kybernetika
%D 2017
%P 220-230
%V 53
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-2-0220/
%R 10.14736/kyb-2017-2-0220
%G en
%F 10_14736_kyb_2017_2_0220
Klicnarová, Jana. On weighted U-statistics for stationary random fields. Kybernetika, Tome 53 (2017) no. 2, pp. 220-230. doi: 10.14736/kyb-2017-2-0220

[1] Bickel, P. J., Wichura, M. J.: Convergence criteria for multiparameter stochastic processes and some applications. Ann. Math. Statist. 42 (1971), 5, 1656-1670. | DOI | MR | Zbl

[2] Bolthausen, E.: On the central limit theorem for stationary mixing random fields. Ann. Probab. 10 (1982), 4, 1047-1050. | DOI | MR | Zbl

[3] Borovkova, S., Burton, R., Dehling, H.: Limit theorems for functionals of mixing processes with applications to U-statistics and dimension estimation. Trans. Amer. Math. Soc. 353) (2001), 11, 4261-4318. | DOI | MR | Zbl

[4] Denker, M., Gordin, M.: Limit theorems for von Mises statistics of a measure preserving transformation. Probab. Theory Related Fields, \mi{160} (2014), 1-2, 1-45. | DOI | MR | Zbl

[5] Denker, M., Keller, G.: On U-statistics and von Mises statistics for weakly dependent processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 64 (1983), 4, 505-522. | DOI | MR | Zbl

[6] Dewan, I., Rao, B. P.: Asymptotic normality for U-statistics of associated random variables. J. Statist. Planning Inference 97 (2001), 2, 201-225. | DOI | MR | Zbl

[7] Machkouri, M. El, Volný, D., Wu, W. B.: A central limit theorem for stationary random fields. Stochast. Processes Appl. 123 (2013), 1, 1-14. | DOI | MR | Zbl

[8] Heinrich, L.: Asymptotic behaviour of an empirical nearest neighbour distance function for stationary Poisson cluster processes. Math. Nachrichten 136 (1988), 1, 131-148. | DOI | MR | Zbl

[9] Hoeffding, W.: A class of statistics with asymptotically normal distribution. Ann. Math. Statist. 19 (1948), 3, 293-325. | DOI | MR | Zbl

[10] Hsing, T., Wu, W. B.: On Weighted U-statistics for stationary processes. Ann. Probab. 32 (2004), 2, 1600-1631. | DOI | MR | Zbl

[11] Khoshnevisan, D.: Multiparameter Processes: An Introduction to Random Fields. Springer, 2002. | MR | Zbl

[12] Koroljuk, V. S., Borovskich, Y. V.: Theory of $U $-statistics. Springer, 1994. | MR

[13] Lee, J.: U-statistics. Theory and Practice. Academic Press, 1990. | Zbl

[14] Leucht, A., Neumann, M. H.: Degenerate U-and V-statistics under ergodicity: Asymptotics, bootstrap and applications in statistics. Ann. Inst. of Statist. Math. 65 (2013), 2, 349-386. | DOI | MR

[15] Volný, D., Wang, Y.: An invariance principle for stationary random fields under Hannan's condition. Stoch. Process. Appl. 124 (12) (2014), 12, 4012-4029. | DOI | MR | Zbl

[16] Wang, Y., Woodroofe, M.: A new condition on invariance principles for stationary random fields. Statist. Sinica 23 (2013), 4, 1673-1696. | DOI | MR

Cité par Sources :